Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 164956 by Jamshidbek last updated on 24/Jan/22

a_1 =1 a_2 =−1  and  a_n =−a_(n−1) −2a_(n−2)   Find  a_n

$$\mathrm{a}_{\mathrm{1}} =\mathrm{1}\:\mathrm{a}_{\mathrm{2}} =−\mathrm{1}\:\:\mathrm{and}\:\:\mathrm{a}_{\mathrm{n}} =−\mathrm{a}_{\mathrm{n}−\mathrm{1}} −\mathrm{2a}_{\mathrm{n}−\mathrm{2}} \\ $$$$\mathrm{Find}\:\:\mathrm{a}_{\mathrm{n}} \\ $$

Answered by mr W last updated on 24/Jan/22

1,−1,0,1,−1,0,1,−1,0,...  through “observation”:  ⇒a_(3n) =0  ⇒a_(3n+1) =1  ⇒a_(3n+2) =−1    general method:  r^2 +r+2=0  r=((−1±i(√3))/2)=−e^(±((πi)/3))   a_n =(−1)^n {Ae^((nπi)/3) +Be^(−((nπi)/3)) }  a_2 =−a_1 −2a_0  ⇒−1=−1−2a_0  ⇒a_0 =0  a_0 =A+B=0  a_1 =−{A((1+i(√3))/2)+B((1−i(√3))/2)}=1  A{((1+i(√3))/2)−((1−i(√3))/2)}=−1  A=(i/( (√3)))=(1/( (√3)))e^((πi)/2) =−B  a_n =(((−1)^n )/( (√3))){e^(((nπi)/3)+((πi)/2)) −e^(−((nπi)/3)+((πi)/2)) }  a_n =(((−1)^n )/( (√3))){cos (((nπ)/3)+(π/2))−cos (−((nπ)/3)+(π/2))+i [sin (((nπ)/3)+(π/2))−sin (−((nπ)/3)+(π/2))]}  a_n =(((−1)^n )/( (√3))){−2sin (((nπ)/3))+i [cos (((nπ)/3))−cos (((nπ)/3))}  a_n =(((−1)^(n+1) 2 sin (((nπ)/3)))/( (√3)))

$$\mathrm{1},−\mathrm{1},\mathrm{0},\mathrm{1},−\mathrm{1},\mathrm{0},\mathrm{1},−\mathrm{1},\mathrm{0},... \\ $$$${through}\:``{observation}'': \\ $$$$\Rightarrow{a}_{\mathrm{3}{n}} =\mathrm{0} \\ $$$$\Rightarrow{a}_{\mathrm{3}{n}+\mathrm{1}} =\mathrm{1} \\ $$$$\Rightarrow{a}_{\mathrm{3}{n}+\mathrm{2}} =−\mathrm{1} \\ $$$$ \\ $$$${general}\:{method}: \\ $$$${r}^{\mathrm{2}} +{r}+\mathrm{2}=\mathrm{0} \\ $$$${r}=\frac{−\mathrm{1}\pm{i}\sqrt{\mathrm{3}}}{\mathrm{2}}=−{e}^{\pm\frac{\pi{i}}{\mathrm{3}}} \\ $$$${a}_{{n}} =\left(−\mathrm{1}\right)^{{n}} \left\{{Ae}^{\frac{{n}\pi{i}}{\mathrm{3}}} +{Be}^{−\frac{{n}\pi{i}}{\mathrm{3}}} \right\} \\ $$$${a}_{\mathrm{2}} =−{a}_{\mathrm{1}} −\mathrm{2}{a}_{\mathrm{0}} \:\Rightarrow−\mathrm{1}=−\mathrm{1}−\mathrm{2}{a}_{\mathrm{0}} \:\Rightarrow{a}_{\mathrm{0}} =\mathrm{0} \\ $$$${a}_{\mathrm{0}} ={A}+{B}=\mathrm{0} \\ $$$${a}_{\mathrm{1}} =−\left\{{A}\frac{\mathrm{1}+{i}\sqrt{\mathrm{3}}}{\mathrm{2}}+{B}\frac{\mathrm{1}−{i}\sqrt{\mathrm{3}}}{\mathrm{2}}\right\}=\mathrm{1} \\ $$$${A}\left\{\frac{\mathrm{1}+{i}\sqrt{\mathrm{3}}}{\mathrm{2}}−\frac{\mathrm{1}−{i}\sqrt{\mathrm{3}}}{\mathrm{2}}\right\}=−\mathrm{1} \\ $$$${A}=\frac{{i}}{\:\sqrt{\mathrm{3}}}=\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}{e}^{\frac{\pi{i}}{\mathrm{2}}} =−{B} \\ $$$${a}_{{n}} =\frac{\left(−\mathrm{1}\right)^{{n}} }{\:\sqrt{\mathrm{3}}}\left\{{e}^{\frac{{n}\pi{i}}{\mathrm{3}}+\frac{\pi{i}}{\mathrm{2}}} −{e}^{−\frac{{n}\pi{i}}{\mathrm{3}}+\frac{\pi{i}}{\mathrm{2}}} \right\} \\ $$$${a}_{{n}} =\frac{\left(−\mathrm{1}\right)^{{n}} }{\:\sqrt{\mathrm{3}}}\left\{\mathrm{cos}\:\left(\frac{{n}\pi}{\mathrm{3}}+\frac{\pi}{\mathrm{2}}\right)−\mathrm{cos}\:\left(−\frac{{n}\pi}{\mathrm{3}}+\frac{\pi}{\mathrm{2}}\right)+{i}\:\left[\mathrm{sin}\:\left(\frac{{n}\pi}{\mathrm{3}}+\frac{\pi}{\mathrm{2}}\right)−\mathrm{sin}\:\left(−\frac{{n}\pi}{\mathrm{3}}+\frac{\pi}{\mathrm{2}}\right)\right]\right\} \\ $$$${a}_{{n}} =\frac{\left(−\mathrm{1}\right)^{{n}} }{\:\sqrt{\mathrm{3}}}\left\{−\mathrm{2sin}\:\left(\frac{{n}\pi}{\mathrm{3}}\right)+{i}\:\left[\mathrm{cos}\:\left(\frac{{n}\pi}{\mathrm{3}}\right)−\mathrm{cos}\:\left(\frac{{n}\pi}{\mathrm{3}}\right)\right\}\right. \\ $$$${a}_{{n}} =\frac{\left(−\mathrm{1}\right)^{{n}+\mathrm{1}} \mathrm{2}\:\mathrm{sin}\:\left(\frac{{n}\pi}{\mathrm{3}}\right)}{\:\sqrt{\mathrm{3}}} \\ $$

Commented by solihin last updated on 24/Jan/22

    how′d  you  got  the  a_(3n) ?

$$ \\ $$$$ \\ $$$${how}'{d}\:\:{you}\:\:{got}\:\:{the}\:\:{a}_{\mathrm{3}{n}} ? \\ $$$$ \\ $$

Commented by solihin last updated on 24/Jan/22

i  mean  the  sequence

$${i}\:\:{mean}\:\:{the}\:\:{sequence} \\ $$

Commented by mr W last updated on 24/Jan/22

with a_1 =1, a_2 =−1 and a_n =−a_(n−1) −2a_(n−2)   you get  a_3 =0  a_4 =1  a_5 =−1  a_6 =0  a_7 =1  a_8 =−1  a_9 =0  ....  then you can see  a_(3n) =0  a_(3n+1) =1  a_(3n+2) =−1  this is not an “exact” method. it  is based on “observation”.  therefore i have given a second and  more general method.

$${with}\:{a}_{\mathrm{1}} =\mathrm{1},\:{a}_{\mathrm{2}} =−\mathrm{1}\:{and}\:{a}_{{n}} =−{a}_{{n}−\mathrm{1}} −\mathrm{2}{a}_{{n}−\mathrm{2}} \\ $$$${you}\:{get} \\ $$$${a}_{\mathrm{3}} =\mathrm{0} \\ $$$${a}_{\mathrm{4}} =\mathrm{1} \\ $$$${a}_{\mathrm{5}} =−\mathrm{1} \\ $$$${a}_{\mathrm{6}} =\mathrm{0} \\ $$$${a}_{\mathrm{7}} =\mathrm{1} \\ $$$${a}_{\mathrm{8}} =−\mathrm{1} \\ $$$${a}_{\mathrm{9}} =\mathrm{0} \\ $$$$.... \\ $$$${then}\:{you}\:{can}\:{see} \\ $$$${a}_{\mathrm{3}{n}} =\mathrm{0} \\ $$$${a}_{\mathrm{3}{n}+\mathrm{1}} =\mathrm{1} \\ $$$${a}_{\mathrm{3}{n}+\mathrm{2}} =−\mathrm{1} \\ $$$${this}\:{is}\:{not}\:{an}\:``{exact}''\:{method}.\:{it} \\ $$$${is}\:{based}\:{on}\:``{observation}''. \\ $$$${therefore}\:{i}\:{have}\:{given}\:{a}\:{second}\:{and} \\ $$$${more}\:{general}\:{method}. \\ $$

Commented by Tawa11 last updated on 24/Jan/22

Great sir.

$$\mathrm{Great}\:\mathrm{sir}. \\ $$

Commented by Jamshidbek last updated on 25/Jan/22

Mistake

$$\mathrm{Mistake} \\ $$

Commented by mr W last updated on 25/Jan/22

you should be more clear sir! what do  you mean? is there a mistake in the  question or is there a mistake in my  solution or what else?

$${you}\:{should}\:{be}\:{more}\:{clear}\:{sir}!\:{what}\:{do} \\ $$$${you}\:{mean}?\:{is}\:{there}\:{a}\:{mistake}\:{in}\:{the} \\ $$$${question}\:{or}\:{is}\:{there}\:{a}\:{mistake}\:{in}\:{my} \\ $$$${solution}\:{or}\:{what}\:{else}? \\ $$

Commented by aleks041103 last updated on 25/Jan/22

I think that you can also prove this  by induction.

$${I}\:{think}\:{that}\:{you}\:{can}\:{also}\:{prove}\:{this} \\ $$$${by}\:{induction}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com