Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 16499 by Tinkutara last updated on 23/Jun/17

A particle is moving in parabolic path  x^2  = y, with constant speed u. Find the  acceleration of the particle when it  crossess origin. Also find the radius of  curvature at origin.

$$\mathrm{A}\:\mathrm{particle}\:\mathrm{is}\:\mathrm{moving}\:\mathrm{in}\:\mathrm{parabolic}\:\mathrm{path} \\ $$$${x}^{\mathrm{2}} \:=\:{y},\:\mathrm{with}\:\mathrm{constant}\:\mathrm{speed}\:{u}.\:\mathrm{Find}\:\mathrm{the} \\ $$$$\mathrm{acceleration}\:\mathrm{of}\:\mathrm{the}\:\mathrm{particle}\:\mathrm{when}\:\mathrm{it} \\ $$$$\mathrm{crossess}\:\mathrm{origin}.\:\mathrm{Also}\:\mathrm{find}\:\mathrm{the}\:\mathrm{radius}\:\mathrm{of} \\ $$$$\mathrm{curvature}\:\mathrm{at}\:\mathrm{origin}. \\ $$

Answered by ajfour last updated on 23/Jun/17

x^2 =y   ⇒  (dy/dx)=2x    which is zero   at the origin. And (d^2 y/dx^2 ) = 2  radius of curvature,         r = ∣(([1+(dy/dx)^2 ]^(3/2) )/(d^2 y/dx^2 ))∣=(1/2) .               x^2 =y   2x(dx/dt)=(dy/dt) =v_y   (=0 at origin) ..(i)             u^2 =((dx/dt))^2 +((dy/dt))^2       ....(ii)  ⇒   ((dx/dt))^2 =(u^2 /(1+4x^2 ))    ....(iii)     so ((dx/dt))^2  = u^2   at the origin          2((dx/dt))^2 +2x(d^2 x/dt^2 )=(d^2 y/dt^2 )  .....(iv)  means at origin, (d^2 y/dt^2 )=a_y =2u^2                                                     ......(v)  ⇒   ((dx/dt))^2 =(u^2 /(1+4x^2 ))      2((dx/dt))((d^2 x/dt^2 ))=− ((8u^2 x)/((1+4x^2 )^2 ))((dx/dt))  a_x = (d^2 x/dt^2 ) = −((4u^2 x)/((1+4x^2 )^2 ))  , this is zero   at the origin.  acceleration a=(d^2 x/dt^2 )+(d^2 y/dt^2 )   at origin a = 0 +2u^2      [see (v)].

$${x}^{\mathrm{2}} ={y}\:\:\:\Rightarrow\:\:\frac{{dy}}{{dx}}=\mathrm{2}{x}\:\:\:\:{which}\:{is}\:{zero} \\ $$$$\:{at}\:{the}\:{origin}.\:{And}\:\frac{{d}^{\mathrm{2}} {y}}{{dx}^{\mathrm{2}} }\:=\:\mathrm{2} \\ $$$${radius}\:{of}\:{curvature},\: \\ $$$$\:\:\:\:\:\:{r}\:=\:\mid\frac{\left[\mathrm{1}+\left({dy}/{dx}\right)^{\mathrm{2}} \right]^{\mathrm{3}/\mathrm{2}} }{{d}^{\mathrm{2}} {y}/{dx}^{\mathrm{2}} }\mid=\frac{\mathrm{1}}{\mathrm{2}}\:. \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{{x}}^{\mathrm{2}} =\boldsymbol{{y}} \\ $$$$\:\mathrm{2}{x}\frac{{dx}}{{dt}}=\frac{{dy}}{{dt}}\:={v}_{{y}} \:\:\left(=\mathrm{0}\:{at}\:{origin}\right)\:..\left({i}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:{u}^{\mathrm{2}} =\left(\frac{{dx}}{{dt}}\right)^{\mathrm{2}} +\left(\frac{{dy}}{{dt}}\right)^{\mathrm{2}} \:\:\:\:\:\:....\left({ii}\right) \\ $$$$\Rightarrow\:\:\:\left(\frac{{dx}}{{dt}}\right)^{\mathrm{2}} =\frac{{u}^{\mathrm{2}} }{\mathrm{1}+\mathrm{4}{x}^{\mathrm{2}} }\:\:\:\:....\left({iii}\right) \\ $$$$\:\:\:{so}\:\left(\frac{{dx}}{{dt}}\right)^{\mathrm{2}} \:=\:{u}^{\mathrm{2}} \:\:{at}\:{the}\:{origin} \\ $$$$\:\:\:\:\:\:\:\:\mathrm{2}\left(\frac{{dx}}{{dt}}\right)^{\mathrm{2}} +\mathrm{2}{x}\frac{{d}^{\mathrm{2}} {x}}{{dt}^{\mathrm{2}} }=\frac{{d}^{\mathrm{2}} {y}}{{dt}^{\mathrm{2}} }\:\:.....\left({iv}\right) \\ $$$${means}\:{at}\:{origin},\:\frac{{d}^{\mathrm{2}} {y}}{{dt}^{\mathrm{2}} }={a}_{{y}} =\mathrm{2}{u}^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:......\left({v}\right) \\ $$$$\Rightarrow\:\:\:\left(\frac{{dx}}{{dt}}\right)^{\mathrm{2}} =\frac{{u}^{\mathrm{2}} }{\mathrm{1}+\mathrm{4}{x}^{\mathrm{2}} }\: \\ $$$$\:\:\:\mathrm{2}\left(\frac{{dx}}{{dt}}\right)\left(\frac{{d}^{\mathrm{2}} {x}}{{dt}^{\mathrm{2}} }\right)=−\:\frac{\mathrm{8}{u}^{\mathrm{2}} {x}}{\left(\mathrm{1}+\mathrm{4}{x}^{\mathrm{2}} \right)^{\mathrm{2}} }\left(\frac{{dx}}{{dt}}\right) \\ $$$${a}_{{x}} =\:\frac{{d}^{\mathrm{2}} {x}}{{dt}^{\mathrm{2}} }\:=\:−\frac{\mathrm{4}{u}^{\mathrm{2}} {x}}{\left(\mathrm{1}+\mathrm{4}{x}^{\mathrm{2}} \right)^{\mathrm{2}} }\:\:,\:{this}\:{is}\:{zero} \\ $$$$\:{at}\:{the}\:{origin}. \\ $$$${acceleration}\:{a}=\frac{{d}^{\mathrm{2}} {x}}{{dt}^{\mathrm{2}} }+\frac{{d}^{\mathrm{2}} {y}}{{dt}^{\mathrm{2}} }\: \\ $$$${at}\:{origin}\:{a}\:=\:\mathrm{0}\:+\mathrm{2}{u}^{\mathrm{2}} \:\:\:\:\:\left[{see}\:\left({v}\right)\right]. \\ $$

Commented by Tinkutara last updated on 23/Jun/17

Thanks Sir!

$$\mathrm{Thanks}\:\mathrm{Sir}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com