Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 164991 by mkam last updated on 24/Jan/22

Solve by resideo theorem ∫_(−∞) ^( ∞)  (z^2 /(z^4 +1)) dz

Solvebyresideotheoremz2z4+1dz

Commented by mkam last updated on 24/Jan/22

?????

?????

Answered by aleks041103 last updated on 26/Jan/22

Define the region   Ω_r :={z∣Im(z)≥0 and ∣z∣≤r}⊂C   where r∈R^+ .  Therefore the boundary is:  ∂Ω_r =Γ_r ∪Λ_r , where   Γ_r :={z∣Im(z)>0 and ∣z∣=r}  and Λ_r :={z∣z∈R and z∈[−r,r]}.  Then:  ∮_( ∂Ω_r ) (z^2 /(z^4 +1))dz=∫_Γ_r  (z^2 /(z^4 +1))dz + ∫_Λ_r  (z^2 /(z^4 +1))dz=  =∫_0 ^π ((r^2 e^(2it) )/(r^4 e^(4it) +1))d(re^(it) )+∫_(−r) ^( r) (z^2 /(z^4 +1))dz  if r→∞:  lim_(r→∞) ∫_Γ_r  (z^2 /(z^4 +1))dz=∫_0 ^π (lim_(r→∞) ((ir^3 e^(3it) )/(r^4 e^(4it) +1)))dt=0  ⇒lim_(r→∞) ∮_( ∂Ω_r ) (z^2 /(z^4 +1))dz=∫_(−∞) ^( ∞) (z^2 /(z^4 +1))dz  From the residue theorem:  lim_(r→∞) ∮_( ∂Ω_r ) (z^2 /(z^4 +1))dz=2πiΣ_j Res((z^2 /(z^4 +1)),z_j ∈Ω_∞ )  Ω_∞ :={z∣Im(z)≥0}  ⇒∫_(−∞) ^( ∞) (z^2 /(z^4 +1))dz=2πiΣ_j Res((z^2 /(z^4 +1)),Im(z_j )≥0)  The poles of (z^2 /(z^4 +1)) are:  z^4 +1=0⇒z=e^(iπ/4) ,e^(3iπ/4) ,e^(5iπ/4) ,e^(7iπ/4)   or z=(1/( (√2)))+(1/( (√2)))i,−(1/( (√2)))+(1/( (√2)))i,−(1/( (√2)))−(1/( (√2)))i,(1/( (√2)))−(1/( (√2)))i  Only the poles at  z=e^(iπ/4)  and z=e^(3iπ/4)  lie inside the region  Ω_∞ .  ⇒∫_(−∞) ^( ∞) (z^2 /(z^4 +1))dz=2πi(Res(e^(iπ/4) )+Res(e^(3iπ/4) ))  (z^2 /(z^4 +1))=(z^2 /((z−e^(iπ/4) )(z−e^(3iπ/4) )(z−e^(5iπ/4) )(z−e^(7iπ/4) )))  Therefore the poles are simple  ⇒Res(e^(iπ/4) )=lim_(z→e^(iπ/4) ) (((z−e^(iπ/4) )z^2 )/(z^4 +1))=^(l′hopital)   =lim_(z→e^(iπ/4) ) ((3z^2 −2ze^(iπ/4) )/(4z^3 ))=(1/4)e^(−iπ/4)   Res(e^(3iπ/4) )=lim_(z→e^(3iπ/4) ) (((z−e^(3iπ/4) )z^2 )/(z^4 +1))=  =lim_(z→e^(3iπ/4) ) ((3z^2 −2ze^(3iπ/4) )/(4z^3 ))=(1/4)e^(−3iπ/4)   ∫_(−∞) ^( ∞) (z^2 /(z^4 +1))dz=2πi((1/4)e^(−iπ/4) +(1/4)e^(−3iπ/4) )=  =((πi)/2)((1/( (√2)))−(i/( (√2)))+(−(1/( (√2))))−(i/( (√2))))=  =((πi)/2)(−((2i)/( (√2))))=  =(π/( (√2)))

DefinetheregionΩr:={zIm(z)0andz∣⩽r}CwhererR+.Thereforetheboundaryis:Ωr=ΓrΛr,whereΓr:={zIm(z)>0andz∣=r}andΛr:={zzRandz[r,r]}.Then:Ωrz2z4+1dz=Γrz2z4+1dz+Λrz2z4+1dz==0πr2e2itr4e4it+1d(reit)+rrz2z4+1dzifr:limrΓrz2z4+1dz=0π(limrir3e3itr4e4it+1)dt=0limrΩrz2z4+1dz=z2z4+1dzFromtheresiduetheorem:limrΩrz2z4+1dz=2πijRes(z2z4+1,zjΩ)Ω:={zIm(z)0}z2z4+1dz=2πijRes(z2z4+1,Im(zj)0)Thepolesofz2z4+1are:z4+1=0z=eiπ/4,e3iπ/4,e5iπ/4,e7iπ/4orz=12+12i,12+12i,1212i,1212iOnlythepolesatz=eiπ/4andz=e3iπ/4lieinsidetheregionΩ.z2z4+1dz=2πi(Res(eiπ/4)+Res(e3iπ/4))z2z4+1=z2(zeiπ/4)(ze3iπ/4)(ze5iπ/4)(ze7iπ/4)ThereforethepolesaresimpleRes(eiπ/4)=limzeiπ/4(zeiπ/4)z2z4+1=lhopital=limzeiπ/43z22zeiπ/44z3=14eiπ/4Res(e3iπ/4)=limze3iπ/4(ze3iπ/4)z2z4+1==limze3iπ/43z22ze3iπ/44z3=14e3iπ/4z2z4+1dz=2πi(14eiπ/4+14e3iπ/4)==πi2(12i2+(12)i2)==πi2(2i2)==π2

Commented by Tawa11 last updated on 25/Jan/22

Great sir

Greatsir

Answered by Ar Brandon last updated on 26/Jan/22

I=∫_(−∞) ^(+∞) (z^2 /(z^4 +1))dz=∫_0 ^(+∞) (((z^2 +1)+(z^2 −1))/(z^4 +1))dz     =∫_0 ^(+∞) ((z^2 +1)/(z^4 +1))dz+∫_0 ^(+∞) ((z^2 −1)/(z^4 +1))dz     =∫_0 ^(+∞) ((1+(1/z^2 ))/(z^2 +(1/z^2 )))dz+∫_0 ^(+∞) ((1−(1/z^2 ))/(z^2 +(1/z^2 )))dz     =∫_0 ^(+∞) ((1+(1/z^2 ))/((z−(1/z))^2 +2))dz+∫_0 ^(+∞) ((1−(1/z^2 ))/((z+(1/z))^2 −2))dz     =(1/( (√2)))[arctan(((z^2 −1)/( (√2)z)))]_0 ^(+∞) −(1/( 2(√2)))[ln∣((z^2 +(√2)z+1)/(z^2 −(√2)z+1))∣]_0 ^(+∞)      =(1/( (√2)))((π/2)+(π/2))=(π/( (√2)))

I=+z2z4+1dz=0+(z2+1)+(z21)z4+1dz=0+z2+1z4+1dz+0+z21z4+1dz=0+1+1z2z2+1z2dz+0+11z2z2+1z2dz=0+1+1z2(z1z)2+2dz+0+11z2(z+1z)22dz=12[arctan(z212z)]0+122[lnz2+2z+1z22z+1]0+=12(π2+π2)=π2

Terms of Service

Privacy Policy

Contact: info@tinkutara.com