Question and Answers Forum

All Questions      Topic List

Probability and Statistics Questions

Previous in All Question      Next in All Question      

Previous in Probability and Statistics      Next in Probability and Statistics      

Question Number 164995 by Mathematification last updated on 24/Jan/22

Answered by aleks041103 last updated on 25/Jan/22

Let′s label the top vertex V^( +) , the bottom  one − V^( −) , and the verteces on the base − O.  Notation:  p(n∣A→B) − the probability of arriving  at B after n edges starting from A.  ex. p(10∣V^+ →V^+ ) is the probability we want.    It is obvious, that if after n steps  the ant is either on V^+  or on V^− , then  the ant must have been on O the previous step.  If the ant is on O, 2 of 4 times she will  chose to remain on O and 1/4 times she  will go to V^+  or V^− . Then:  p(n∣V^+ →V^+ )=p(n∣V^+ →V^− )=(1/4)p(n−1∣V^+ →O)  ⇒p(n∣V^+ →O)=4p(n+1∣V^+ →V^+ )  But the total probability after n steps  must be 1:  p(n∣V^+ →V^+ )+p(n∣V^+ →V^− )+p(n∣V^+ →O)=1  ⇒2p(n∣V^+ →V^+ )+4p(n+1∣V^+ →V^+ )=1  let p(n∣V^+ →V^+ )=p_n , then:  2p_n +4p_(n+1) =1  ⇒p_(n+1) =(1/4)−(1/2)p_n   let p_n =a+b_n ⇒  a+b_(n+1) =(1/4)−(a/2)−(1/2)b_n   ⇒let a=(1/4)−(a/2), i.e. a=(2/3) (1/4)=(1/6), then  b_(n+1) =−(1/2)b_n   geometric progression:  b_n =(−(1/2))^(n−1) b_1   ⇒p_n −(1/6)=(−(1/2))^(n−1) (p_1 −(1/6))  But p_1 =p(1∣V^+ →V^+ )=0  ⇒p_n =(1/6)(1−(−(1/2))^(n−1) )  Therefore the answer must be:  p_(10) =(1/6)(1+(1/2^9 ))=((513)/(3072))=((171)/(1024))=p_(10)

$${Let}'{s}\:{label}\:{the}\:{top}\:{vertex}\:{V}^{\:+} ,\:{the}\:{bottom} \\ $$$${one}\:−\:{V}^{\:−} ,\:{and}\:{the}\:{verteces}\:{on}\:{the}\:{base}\:−\:{O}. \\ $$$${Notation}: \\ $$$${p}\left({n}\mid{A}\rightarrow{B}\right)\:−\:{the}\:{probability}\:{of}\:{arriving} \\ $$$${at}\:{B}\:{after}\:{n}\:{edges}\:{starting}\:{from}\:{A}. \\ $$$${ex}.\:{p}\left(\mathrm{10}\mid{V}^{+} \rightarrow{V}^{+} \right)\:{is}\:{the}\:{probability}\:{we}\:{want}. \\ $$$$ \\ $$$${It}\:{is}\:{obvious},\:{that}\:{if}\:{after}\:{n}\:{steps} \\ $$$${the}\:{ant}\:{is}\:{either}\:{on}\:{V}^{+} \:{or}\:{on}\:{V}^{−} ,\:{then} \\ $$$${the}\:{ant}\:{must}\:{have}\:{been}\:{on}\:{O}\:{the}\:{previous}\:{step}. \\ $$$${If}\:{the}\:{ant}\:{is}\:{on}\:{O},\:\mathrm{2}\:{of}\:\mathrm{4}\:{times}\:{she}\:{will} \\ $$$${chose}\:{to}\:{remain}\:{on}\:{O}\:{and}\:\mathrm{1}/\mathrm{4}\:{times}\:{she} \\ $$$${will}\:{go}\:{to}\:{V}^{+} \:{or}\:{V}^{−} .\:{Then}: \\ $$$${p}\left({n}\mid{V}^{+} \rightarrow{V}^{+} \right)={p}\left({n}\mid{V}^{+} \rightarrow{V}^{−} \right)=\frac{\mathrm{1}}{\mathrm{4}}{p}\left({n}−\mathrm{1}\mid{V}^{+} \rightarrow{O}\right) \\ $$$$\Rightarrow{p}\left({n}\mid{V}^{+} \rightarrow{O}\right)=\mathrm{4}{p}\left({n}+\mathrm{1}\mid{V}^{+} \rightarrow{V}^{+} \right) \\ $$$${But}\:{the}\:{total}\:{probability}\:{after}\:{n}\:{steps} \\ $$$${must}\:{be}\:\mathrm{1}: \\ $$$${p}\left({n}\mid{V}^{+} \rightarrow{V}^{+} \right)+{p}\left({n}\mid{V}^{+} \rightarrow{V}^{−} \right)+{p}\left({n}\mid{V}^{+} \rightarrow{O}\right)=\mathrm{1} \\ $$$$\Rightarrow\mathrm{2}{p}\left({n}\mid{V}^{+} \rightarrow{V}^{+} \right)+\mathrm{4}{p}\left({n}+\mathrm{1}\mid{V}^{+} \rightarrow{V}^{+} \right)=\mathrm{1} \\ $$$${let}\:{p}\left({n}\mid{V}^{+} \rightarrow{V}^{+} \right)={p}_{{n}} ,\:{then}: \\ $$$$\mathrm{2}{p}_{{n}} +\mathrm{4}{p}_{{n}+\mathrm{1}} =\mathrm{1} \\ $$$$\Rightarrow{p}_{{n}+\mathrm{1}} =\frac{\mathrm{1}}{\mathrm{4}}−\frac{\mathrm{1}}{\mathrm{2}}{p}_{{n}} \\ $$$${let}\:{p}_{{n}} ={a}+{b}_{{n}} \Rightarrow \\ $$$${a}+{b}_{{n}+\mathrm{1}} =\frac{\mathrm{1}}{\mathrm{4}}−\frac{{a}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{2}}{b}_{{n}} \\ $$$$\Rightarrow{let}\:{a}=\frac{\mathrm{1}}{\mathrm{4}}−\frac{{a}}{\mathrm{2}},\:{i}.{e}.\:{a}=\frac{\mathrm{2}}{\mathrm{3}}\:\frac{\mathrm{1}}{\mathrm{4}}=\frac{\mathrm{1}}{\mathrm{6}},\:{then} \\ $$$${b}_{{n}+\mathrm{1}} =−\frac{\mathrm{1}}{\mathrm{2}}{b}_{{n}} \\ $$$${geometric}\:{progression}: \\ $$$${b}_{{n}} =\left(−\frac{\mathrm{1}}{\mathrm{2}}\right)^{{n}−\mathrm{1}} {b}_{\mathrm{1}} \\ $$$$\Rightarrow{p}_{{n}} −\frac{\mathrm{1}}{\mathrm{6}}=\left(−\frac{\mathrm{1}}{\mathrm{2}}\right)^{{n}−\mathrm{1}} \left({p}_{\mathrm{1}} −\frac{\mathrm{1}}{\mathrm{6}}\right) \\ $$$${But}\:{p}_{\mathrm{1}} ={p}\left(\mathrm{1}\mid{V}^{+} \rightarrow{V}^{+} \right)=\mathrm{0} \\ $$$$\Rightarrow{p}_{{n}} =\frac{\mathrm{1}}{\mathrm{6}}\left(\mathrm{1}−\left(−\frac{\mathrm{1}}{\mathrm{2}}\right)^{{n}−\mathrm{1}} \right) \\ $$$${Therefore}\:{the}\:{answer}\:{must}\:{be}: \\ $$$${p}_{\mathrm{10}} =\frac{\mathrm{1}}{\mathrm{6}}\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{9}} }\right)=\frac{\mathrm{513}}{\mathrm{3072}}=\frac{\mathrm{171}}{\mathrm{1024}}={p}_{\mathrm{10}} \\ $$

Commented by aleks041103 last updated on 25/Jan/22

It is worth noting, that p_n →(1/6), when  n→∞. This is connected to Markov′s rule  that after enough random walks on a graph,  the probability of being on any vertex   is proportional to the number of edges  connected to the given vertex. In our  case all verteces have 4 edges connected  to them, and therefore the probability  is the same for all 6 verteces, i.e. it′s  (1/6).

$${It}\:{is}\:{worth}\:{noting},\:{that}\:{p}_{{n}} \rightarrow\frac{\mathrm{1}}{\mathrm{6}},\:{when} \\ $$$${n}\rightarrow\infty.\:{This}\:{is}\:{connected}\:{to}\:{Markov}'{s}\:{rule} \\ $$$${that}\:{after}\:{enough}\:{random}\:{walks}\:{on}\:{a}\:{graph}, \\ $$$${the}\:{probability}\:{of}\:{being}\:{on}\:{any}\:{vertex}\: \\ $$$${is}\:{proportional}\:{to}\:{the}\:{number}\:{of}\:{edges} \\ $$$${connected}\:{to}\:{the}\:{given}\:{vertex}.\:{In}\:{our} \\ $$$${case}\:{all}\:{verteces}\:{have}\:\mathrm{4}\:{edges}\:{connected} \\ $$$${to}\:{them},\:{and}\:{therefore}\:{the}\:{probability} \\ $$$${is}\:{the}\:{same}\:{for}\:{all}\:\mathrm{6}\:{verteces},\:{i}.{e}.\:{it}'{s} \\ $$$$\frac{\mathrm{1}}{\mathrm{6}}. \\ $$$$ \\ $$

Commented by Tawa11 last updated on 25/Jan/22

Great sir

$$\mathrm{Great}\:\mathrm{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com