All Questions Topic List
Algebra Questions
Previous in All Question Next in All Question
Previous in Algebra Next in Algebra
Question Number 165098 by mnjuly1970 last updated on 26/Jan/22
Answered by Eulerian last updated on 26/Jan/22
Solution:Weknowthat:12+22+32+......+n2=n(n+1)(2n+1)6∴n(n+1)(2n+1)6=m26m2=(n2+n)(2n+1)6m2=2n3+3n2+n3m2=n3+3n22+n2Onecaneasilynoticethatwhen(m,n)=(1,1)theequationsatisfiesthecondition.Bytransformingtherighthandsideintoadepressedcubicpolynomial,let:n=z−(32)3=z−12∴(z−12)3+32⋅(z−12)2+12⋅(z−12)=3m2z3+(12−(32)23)⋅z+2(32)3−9(32)(12)27=3m2z3−z4=3m2let:3m2=y2Noticethatwenowhaveaformofellipticcurveequation:y2=z3−z4Andfromourprevioussolution,itworksat(y,z)=(±3,32).Bybuildingatangentlinetotheellipticcurve,wehave:y′=ddz(z3−z4)=(12z2−18z3−2z)⋅z3−z4mtan=13312∴y−y1=mtan(z−z1)y=13312⋅(z−32)+3Thus,wecannowseeallofthepossiblesolutionstotheequation:13312⋅(z−32)+3=z3−z4z=2548Therefore,wenowhave:y2=(2548)3−(14)(2548)y=±353576∴(y,z)=(±353576,2548),(±3,32)Bysubstitutingback,wenowhave:3m2=(±353576)2m=±35576and2548−12=nn=148∴(m,n)=(±1,1),(±35576,148)Bygraphingtheellipticcurveanditstangentline:
Commented by Rasheed.Sindhi last updated on 26/Jan/22
n,mmustbenatural!
Answered by Sheenaynay last updated on 26/Jan/22
n×(n+1)×(2n+1)6=m2n(n+1)(2n+1)=m2×6n=24∧m=70
Terms of Service
Privacy Policy
Contact: info@tinkutara.com