Question and Answers Forum

All Questions      Topic List

Differential Equation Questions

Previous in All Question      Next in All Question      

Previous in Differential Equation      Next in Differential Equation      

Question Number 16514 by Sai dadon. last updated on 23/Jun/17

Help plz  Given 2d^2 x/dt^2 +2dx/dt+x=ksint  where k is constant show that if x=n  and dx/dt=0 when t=0 then   x=e^(−1/2t) {(n+2/5k)cos(t/2)+)+(n+4/5k)sin(t/2)}  −1/5ksint−2/5kcost.

$${Help}\:{plz} \\ $$$${Given}\:\mathrm{2}{d}^{\mathrm{2}} {x}/{dt}^{\mathrm{2}} +\mathrm{2}{dx}/{dt}+{x}={ksint} \\ $$$${where}\:{k}\:{is}\:{constant}\:{show}\:{that}\:{if}\:{x}={n} \\ $$$${and}\:{dx}/{dt}=\mathrm{0}\:{when}\:{t}=\mathrm{0}\:{then}\: \\ $$$$\left.{x}={e}^{−\mathrm{1}/\mathrm{2}{t}} \left\{\left({n}+\mathrm{2}/\mathrm{5}{k}\right){cos}\left({t}/\mathrm{2}\right)+\right)+\left({n}+\mathrm{4}/\mathrm{5}{k}\right){sin}\left({t}/\mathrm{2}\right)\right\} \\ $$$$−\mathrm{1}/\mathrm{5}{ksint}−\mathrm{2}/\mathrm{5}{kcost}. \\ $$

Commented by Sai dadon. last updated on 23/Jun/17

I need help guys.

$${I}\:{need}\:{help}\:{guys}. \\ $$

Answered by ajfour last updated on 23/Jun/17

 characteristic equation is:    2λ^2 +2λ+1=0   λ=((−2±(√(4−8)))/4)   ⇒  λ_1 =−(1/2)+(i/2) , λ_2 =−(1/2)−(i/2)   x_h = e^(−t/2) [Acos (t/2)+Bsin (t/2)]  let x_p =Kcos t+Msin t         x_p ^′ =−Ksin t+Mcos  t        x_p ^(′′) =−Kcos t−Msin t =− x_p   substituting x=x_p  in   2x^(′′) +2x′+x=k sin t    −2x_p +2x_p ^′ +x_p = k sin t    2x_p ^′ −x_p =k sin t    2(−Ksin t+Mcos t)       −Msin t−Kcos t = k sin t  ⇒  2K+M=−k     and         2M−K = 0   or  K=2M   so,       5M=−k            M= −(k/5)  and K=−(2/5)         x_p = −((2k)/5)cos t−(k/5)sin t  the general solution is then   x= e^(−t/2) [Acos (t/2)+Bsin (t/2)]                  −((2k)/5)cos t−(k/5)sin t   ...(i)   with x=n   for t=0    in (i) gives  n= A−((2k)/5)     ⇒ A = n+((2k)/5)   (dx/dt)=−(1/2)e^(−t/2) [Acos (t/2)+Bsin (t/2)]    +e^(−t/2) [−(A/2)sin (t/2)+(B/2)cos (t/2)]           +((2k)/5)sin t−(k/5)cos t  at t=0  we have  (dx/dt)=0 ,  so   0= −(A/2)+(B/2)−(k/5)    B= ((2k)/5)+A = ((2k)/5)+n+((2k)/5)    B = n+((4k)/5) , we then have   x=e^(−t/2) {(n+((2k)/5))cos (t/2)+(n+((4k)/5))sin (t/2)}        −(k/5)sin t−((2k)/5)cos t .

$$\:{characteristic}\:{equation}\:{is}: \\ $$$$\:\:\mathrm{2}\lambda^{\mathrm{2}} +\mathrm{2}\lambda+\mathrm{1}=\mathrm{0} \\ $$$$\:\lambda=\frac{−\mathrm{2}\pm\sqrt{\mathrm{4}−\mathrm{8}}}{\mathrm{4}}\: \\ $$$$\Rightarrow\:\:\lambda_{\mathrm{1}} =−\frac{\mathrm{1}}{\mathrm{2}}+\frac{{i}}{\mathrm{2}}\:,\:\lambda_{\mathrm{2}} =−\frac{\mathrm{1}}{\mathrm{2}}−\frac{{i}}{\mathrm{2}} \\ $$$$\:{x}_{{h}} =\:{e}^{−{t}/\mathrm{2}} \left[{A}\mathrm{cos}\:\left({t}/\mathrm{2}\right)+{B}\mathrm{sin}\:\left({t}/\mathrm{2}\right)\right] \\ $$$${let}\:{x}_{{p}} ={K}\mathrm{cos}\:{t}+{M}\mathrm{sin}\:{t} \\ $$$$\:\:\:\:\:\:\:{x}_{{p}} ^{'} =−{K}\mathrm{sin}\:{t}+{M}\mathrm{cos}\:\:{t} \\ $$$$\:\:\:\:\:\:{x}_{{p}} ^{''} =−{K}\mathrm{cos}\:{t}−{M}\mathrm{sin}\:{t}\:=−\:{x}_{{p}} \\ $$$${substituting}\:{x}={x}_{{p}} \:{in} \\ $$$$\:\mathrm{2}{x}^{''} +\mathrm{2}{x}'+{x}={k}\:\mathrm{sin}\:{t} \\ $$$$\:\:−\mathrm{2}{x}_{{p}} +\mathrm{2}{x}_{{p}} ^{'} +{x}_{{p}} =\:{k}\:\mathrm{sin}\:{t} \\ $$$$\:\:\mathrm{2}{x}_{{p}} ^{'} −{x}_{{p}} ={k}\:\mathrm{sin}\:{t} \\ $$$$\:\:\mathrm{2}\left(−{K}\mathrm{sin}\:{t}+{M}\mathrm{cos}\:{t}\right) \\ $$$$\:\:\:\:\:−{M}\mathrm{sin}\:{t}−{K}\mathrm{cos}\:{t}\:=\:{k}\:\mathrm{sin}\:{t} \\ $$$$\Rightarrow\:\:\mathrm{2}{K}+{M}=−{k}\:\:\:\:\:{and} \\ $$$$\:\:\:\:\:\:\:\mathrm{2}{M}−{K}\:=\:\mathrm{0}\:\:\:{or}\:\:{K}=\mathrm{2}{M} \\ $$$$\:{so},\:\:\:\:\:\:\:\mathrm{5}{M}=−{k}\:\:\: \\ $$$$\:\:\:\:\:\:\:{M}=\:−\frac{{k}}{\mathrm{5}}\:\:{and}\:{K}=−\frac{\mathrm{2}}{\mathrm{5}} \\ $$$$\:\:\:\:\:\:\:{x}_{{p}} =\:−\frac{\mathrm{2}{k}}{\mathrm{5}}\mathrm{cos}\:{t}−\frac{{k}}{\mathrm{5}}\mathrm{sin}\:{t} \\ $$$${the}\:{general}\:{solution}\:{is}\:{then} \\ $$$$\:{x}=\:{e}^{−{t}/\mathrm{2}} \left[{A}\mathrm{cos}\:\left({t}/\mathrm{2}\right)+{B}\mathrm{sin}\:\left({t}/\mathrm{2}\right)\right] \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:−\frac{\mathrm{2}{k}}{\mathrm{5}}\mathrm{cos}\:{t}−\frac{{k}}{\mathrm{5}}\mathrm{sin}\:{t}\:\:\:...\left({i}\right) \\ $$$$\:{with}\:{x}={n}\:\:\:{for}\:{t}=\mathrm{0}\:\:\:\:{in}\:\left({i}\right)\:{gives} \\ $$$${n}=\:{A}−\frac{\mathrm{2}{k}}{\mathrm{5}}\:\:\:\:\:\Rightarrow\:{A}\:=\:{n}+\frac{\mathrm{2}{k}}{\mathrm{5}} \\ $$$$\:\frac{{dx}}{{dt}}=−\frac{\mathrm{1}}{\mathrm{2}}{e}^{−{t}/\mathrm{2}} \left[{A}\mathrm{cos}\:\left({t}/\mathrm{2}\right)+{B}\mathrm{sin}\:\left({t}/\mathrm{2}\right)\right] \\ $$$$\:\:+{e}^{−{t}/\mathrm{2}} \left[−\frac{{A}}{\mathrm{2}}\mathrm{sin}\:\left({t}/\mathrm{2}\right)+\frac{{B}}{\mathrm{2}}\mathrm{cos}\:\left({t}/\mathrm{2}\right)\right] \\ $$$$\:\:\:\:\:\:\:\:\:+\frac{\mathrm{2}{k}}{\mathrm{5}}\mathrm{sin}\:{t}−\frac{{k}}{\mathrm{5}}\mathrm{cos}\:{t} \\ $$$${at}\:{t}=\mathrm{0}\:\:{we}\:{have}\:\:\frac{{dx}}{{dt}}=\mathrm{0}\:,\:\:{so} \\ $$$$\:\mathrm{0}=\:−\frac{{A}}{\mathrm{2}}+\frac{{B}}{\mathrm{2}}−\frac{{k}}{\mathrm{5}} \\ $$$$\:\:{B}=\:\frac{\mathrm{2}{k}}{\mathrm{5}}+{A}\:=\:\frac{\mathrm{2}{k}}{\mathrm{5}}+{n}+\frac{\mathrm{2}{k}}{\mathrm{5}} \\ $$$$\:\:{B}\:=\:{n}+\frac{\mathrm{4}{k}}{\mathrm{5}}\:,\:{we}\:{then}\:{have} \\ $$$$\:\boldsymbol{{x}}={e}^{−{t}/\mathrm{2}} \left\{\left({n}+\frac{\mathrm{2}{k}}{\mathrm{5}}\right)\mathrm{cos}\:\frac{{t}}{\mathrm{2}}+\left({n}+\frac{\mathrm{4}{k}}{\mathrm{5}}\right)\mathrm{sin}\:\frac{{t}}{\mathrm{2}}\right\} \\ $$$$\:\:\:\:\:\:−\frac{{k}}{\mathrm{5}}\mathrm{sin}\:{t}−\frac{\mathrm{2}{k}}{\mathrm{5}}\mathrm{cos}\:{t}\:. \\ $$

Commented by Sai dadon. last updated on 23/Jun/17

Thank you aj.  God bless you.

$${Thank}\:{you}\:{aj}. \\ $$$${God}\:{bless}\:{you}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com