Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 165152 by mnjuly1970 last updated on 26/Jan/22

              prove       Ω=∫_0 ^( 1) (( x − x^( 2) )/((1+x )ln(x))) dx = ln((4/π) )     −−−−−

$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:{prove} \\ $$$$\:\:\:\:\:\Omega=\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\:{x}\:−\:{x}^{\:\mathrm{2}} }{\left(\mathrm{1}+{x}\:\right){ln}\left({x}\right)}\:{dx}\:=\:{ln}\left(\frac{\mathrm{4}}{\pi}\:\right) \\ $$$$\:\:\:−−−−− \\ $$

Answered by mindispower last updated on 26/Jan/22

f(a)=∫_0 ^1 ((x−x^(a+1) )/((1+x)ln(x)))dx,f(0)=0  Ω must bee <0 ln((4/π))>0  f′(a)=∫_0 ^1 ((−x^(1+a) )/(1+x))  =∫_0 ^1 ((x^(2+a) −x^(1+a) )/(1−x^2 ))dx  =(1/2)∫_0 ^1 ((t^((a+1)/2) −t^(a/2) )/(1−t)) .dt  recall Ψ(z+1)=−γ+∫_0 ^1 ((1−x^z )/(1−x))dx  f^′ (a)=(1/2){Ψ((a/2)+1)−Ψ(((a+3)/2))}  f(a)=ln(((Γ(((a+2)/2)))/(Γ(((a+3)/2)))))+c  f(0)=0⇒c=−ln((2/( (√π))))=ln(((√π)/2))  Ω=f(1)=ln((((√π)/2)/1))=ln(((√π)/2))+ln(((√π)/2))=ln((π/4))  Ω=ln((π/4))

$${f}\left({a}\right)=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{x}−{x}^{{a}+\mathrm{1}} }{\left(\mathrm{1}+{x}\right){ln}\left({x}\right)}{dx},{f}\left(\mathrm{0}\right)=\mathrm{0} \\ $$$$\Omega\:{must}\:{bee}\:<\mathrm{0}\:{ln}\left(\frac{\mathrm{4}}{\pi}\right)>\mathrm{0} \\ $$$${f}'\left({a}\right)=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{−{x}^{\mathrm{1}+{a}} }{\mathrm{1}+{x}} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{x}^{\mathrm{2}+{a}} −{x}^{\mathrm{1}+{a}} }{\mathrm{1}−{x}^{\mathrm{2}} }{dx} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{t}^{\frac{{a}+\mathrm{1}}{\mathrm{2}}} −{t}^{\frac{{a}}{\mathrm{2}}} }{\mathrm{1}−{t}}\:.{dt} \\ $$$${recall}\:\Psi\left({z}+\mathrm{1}\right)=−\gamma+\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}−{x}^{{z}} }{\mathrm{1}−{x}}{dx} \\ $$$${f}^{'} \left({a}\right)=\frac{\mathrm{1}}{\mathrm{2}}\left\{\Psi\left(\frac{{a}}{\mathrm{2}}+\mathrm{1}\right)−\Psi\left(\frac{{a}+\mathrm{3}}{\mathrm{2}}\right)\right\} \\ $$$${f}\left({a}\right)={ln}\left(\frac{\Gamma\left(\frac{{a}+\mathrm{2}}{\mathrm{2}}\right)}{\Gamma\left(\frac{{a}+\mathrm{3}}{\mathrm{2}}\right)}\right)+{c} \\ $$$${f}\left(\mathrm{0}\right)=\mathrm{0}\Rightarrow{c}=−{ln}\left(\frac{\mathrm{2}}{\:\sqrt{\pi}}\right)={ln}\left(\frac{\sqrt{\pi}}{\mathrm{2}}\right) \\ $$$$\Omega={f}\left(\mathrm{1}\right)={ln}\left(\frac{\frac{\sqrt{\pi}}{\mathrm{2}}}{\mathrm{1}}\right)={ln}\left(\frac{\sqrt{\pi}}{\mathrm{2}}\right)+{ln}\left(\frac{\sqrt{\pi}}{\mathrm{2}}\right)={ln}\left(\frac{\pi}{\mathrm{4}}\right) \\ $$$$\Omega={ln}\left(\frac{\pi}{\mathrm{4}}\right) \\ $$$$ \\ $$$$ \\ $$

Commented by mnjuly1970 last updated on 27/Jan/22

    thanks alot sir power ..grateful

$$\:\:\:\:{thanks}\:{alot}\:{sir}\:{power}\:..{grateful} \\ $$$$\:\: \\ $$

Commented by mindispower last updated on 27/Jan/22

wthe Pleasur Have a nice Day

$${wthe}\:{Pleasur}\:{Have}\:{a}\:{nice}\:{Day} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com