Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 165194 by mnjuly1970 last updated on 27/Jan/22

      ∫_0 ^( 2π) ln ( 1+ cos (x)).cos (nx )dx=?

02πln(1+cos(x)).cos(nx)dx=?

Answered by mindispower last updated on 27/Jan/22

=∫_0 ^(2π) ln(2cos^2 ((x/2)))cos(nx)dx  x=2y  =2∫_0 ^π ln(2cos^2 (y))cos(2ny)dy  =2∫_0 ^(π/2) ln(2cos^2 (y))cos(2ny)dy+2∫_(π/2) ^π ln(2cos^2 (y))cos(2ny)dy  =4∫_0 ^(π/2) cos(2ny)ln(2cos^2 (y))dy  =4ln(2)∫_0 ^(π/2) cos(2ny)+8∫_0 ^(π/2) cos(2ny)ln(cos(y))dy  =−8∫_0 ^(π/2) Σ_(k≥1) (((−1)^k )/k)cos(2ky)cos(2ny)dy−8ln(2)∫_0 ^(π/2) cos2ny)dy  =−4Σ_(k≥1) (((−1)^k )/k)∫_0 ^(π/2) cos(2(k+n)x)+cos(2(k−n)x)dx  n∈N,k+n≠0;∫_0 ^(π/2) cos(2(k+n)x)dx=0  =−4Σ_(k≥1) (((−1)^k )/k)∫_0 ^(π/2) cos(2(k−n)x)dx=−4(((−1)^n )/n)∫_0 ^(π/2) dx  =−2π(((−1)^n )/n)=((2(−1)^(n−1) )/n)π,∀n≥1  n=0  ∫_0 ^(2π) ln(+cos(x))dx=∫_0 ^(2π) ln(2)+ln(cos^2 ((x/2)))dx  =2πln(2)+∫_0 ^π ln(cos^2 (x))2dx  =2πln(2)+8∫_0 ^(π/2) ln(sin(x))dx  =−2πln(2)  ∫_0 ^(2π) ln(1+cos(x))cos(x)dx= { ((−2πln(2) ,n=0)),((2π.(((−1)^(n−1) )/n);n≥1)) :}

=02πln(2cos2(x2))cos(nx)dxx=2y=20πln(2cos2(y))cos(2ny)dy=20π2ln(2cos2(y))cos(2ny)dy+2π2πln(2cos2(y))cos(2ny)dy=40π2cos(2ny)ln(2cos2(y))dy=4ln(2)0π2cos(2ny)+80π2cos(2ny)ln(cos(y))dy=80π2k1(1)kkcos(2ky)cos(2ny)dy8ln(2)0π2cos2ny)dy=4k1(1)kk0π2cos(2(k+n)x)+cos(2(kn)x)dxnN,k+n0;0π2cos(2(k+n)x)dx=0=4k1(1)kk0π2cos(2(kn)x)dx=4(1)nn0π2dx=2π(1)nn=2(1)n1nπ,n1n=002πln(+cos(x))dx=02πln(2)+ln(cos2(x2))dx=2πln(2)+0πln(cos2(x))2dx=2πln(2)+80π2ln(sin(x))dx=2πln(2)02πln(1+cos(x))cos(x)dx={2πln(2),n=02π.(1)n1n;n1

Commented by mnjuly1970 last updated on 27/Jan/22

very nice  .. really very nice solution  sir power  thanks alot

verynice..reallyverynicesolutionsirpowerthanksalot

Commented by mindispower last updated on 27/Jan/22

thanxSir withe Pleasur  Have a nice Day

thanxSirwithePleasurHaveaniceDay

Answered by aleks041103 last updated on 27/Jan/22

IBP:  I_n =[(1/n)ln(1+cos(x))sin(nx)]_0 ^(2π) +(1/n)∫_0 ^(2π) ((sin(x)sin(nx))/(1+cos(x)))dx  ⇒I_n =(1/n)∫_0 ^(2π) ((sin(x)sin(nx))/(1+cos(x)))dx  let z=e^(ix)   ⇒dz=ie^(ix) dx=izdx⇒dx=(dz/(iz))  sin(x)=((e^(ix) −e^(−ix) )/(2i))=((z^2 −1)/(2iz))  sin(nx)=((z^(2n) −1)/(2iz^n ))  cos(x)=((e^(ix) +e^(−ix) )/2)=((z^2 +1)/(2z))  ⇒((sin(x)sin(nx))/(1+cos(x)))dx=(((z^2 −1)(z^(2n) −1))/(−4iz^(n+2) (1+((z^2 +1)/(2z)))))dz=  =i(((z−1)(z+1)(z^(2n) −1))/(2z^(n+1) (z+1)^2 ))dz=(i/2) (((z−1)(z^(2n) −1))/(z^(n+1) (z+1)))dz  Also when x∈[0,2π], z=e^(ix) ∈Γ:∣z∣=1.  ⇒I_n =(i/(2n))∮_Γ (((z−1)(z^(2n) −1))/(z^(n+1) (z+1)))dz=(i/(2n))∮_Γ f(z)dz  This can be evaluated using the  Residue theorem.  Poles of f(z):  1)z=−1  lim_(z→−1) (((z−1)(z^(2n) −1))/(z^(n+1) (z+1)))=2(−1)^n lim_(z→−1) ((z^(2n) −1)/(z+1))=  =^(l′H) 2(−1)^n lim_(z→−1) ((2nz^(2n−1) )/1)=4n(−1)^(n+1) ↛±∞  ⇒z=−1 is not a pole!  2) z=0 − obv. a pole of (n+1)−th order.  ⇒∮_Γ f(z)dz=2πiRes(f,0)  ⇒I_n =−(π/n)Res(f,0)    Res(f,0)=(1/(n!))lim_(z→0) [(d^n /dz^n )(z^(n+1) f(z))]=  =(1/(n!))lim_(z→0) [(d^n /dz^n )((((z−1)(z^(2n) −1))/((z+1))))]  (((z−1)(z^(2n) −1))/((z+1)))=(z^(2n) −1)((z−1)/(z+1))=  =(z^(2n) −1)(1−(2/(z+1)))=  =z^(2n) +(2/(z+1))−1−((2z^(2n) )/(z+1))  ⇒(d^n /dz^n )((((z−1)(z^(2n) −1))/((z+1))))=  =(((2n)!)/(n!))z^n +2(−1)^n n!(1/((z+1)^(n+1) ))−2(d^n /dz^n )((z^(2n) /(z+1)))  ⇒Res(0,f)=2(−1)^n −(2/(n!)) (d^n /dz^n )((z^(2n) /(z+1)))_(z=0)   Since we want  (d^n /dz^n )((z^(2n) /(z+1))) at z=0 (∣z∣=0<1) we can  use (1/(1+z))=Σ_(i=0) ^∞ (−z)^i   ⇒ (d^n /dz^n )((z^(2n) /(z+1)))_(z=0) = (d^n /dz^n )(Σ_(i=0) ^∞ (−z)^(i+2n) )_(z=0) =  =Σ_(i=0) ^∞ (((2n+i)!)/((n+i)!))((−z)^(i+n) )_(z=0)   since for i≥0 and n≥1, i+n≥1 then  ((−z)^(i+n) )_(z=0) =0  ⇒(d^n /dz^n )((z^(2n) /(z+1)))_(z=0) = 0  ⇒Res(0,f)=2(−1)^n   ⇒I_n =((2(−1)^(n+1) π)/n)

IBP:In=[1nln(1+cos(x))sin(nx)]02π+1n02πsin(x)sin(nx)1+cos(x)dxIn=1n02πsin(x)sin(nx)1+cos(x)dxletz=eixdz=ieixdx=izdxdx=dzizsin(x)=eixeix2i=z212izsin(nx)=z2n12izncos(x)=eix+eix2=z2+12zsin(x)sin(nx)1+cos(x)dx=(z21)(z2n1)4izn+2(1+z2+12z)dz==i(z1)(z+1)(z2n1)2zn+1(z+1)2dz=i2(z1)(z2n1)zn+1(z+1)dzAlsowhenx[0,2π],z=eixΓ:∣z∣=1.In=i2nΓ(z1)(z2n1)zn+1(z+1)dz=i2nΓf(z)dzThiscanbeevaluatedusingtheResiduetheorem.Polesoff(z):1)z=1limz1(z1)(z2n1)zn+1(z+1)=2(1)nlimz1z2n1z+1==lH2(1)nlimz12nz2n11=4n(1)n+1±z=1isnotapole!2)z=0obv.apoleof(n+1)thorder.Γf(z)dz=2πiRes(f,0)In=πnRes(f,0)Res(f,0)=1n!limz0[dndzn(zn+1f(z))]==1n!limz0[dndzn((z1)(z2n1)(z+1))](z1)(z2n1)(z+1)=(z2n1)z1z+1==(z2n1)(12z+1)==z2n+2z+112z2nz+1dndzn((z1)(z2n1)(z+1))==(2n)!n!zn+2(1)nn!1(z+1)n+12dndzn(z2nz+1)Res(0,f)=2(1)n2n!dndzn(z2nz+1)z=0Sincewewantdndzn(z2nz+1)atz=0(z∣=0<1)wecanuse11+z=i=0(z)idndzn(z2nz+1)z=0=dndzn(i=0(z)i+2n)z=0==i=0(2n+i)!(n+i)!((z)i+n)z=0sincefori0andn1,i+n1then((z)i+n)z=0=0dndzn(z2nz+1)z=0=0Res(0,f)=2(1)nIn=2(1)n+1πn

Commented by mindispower last updated on 28/Jan/22

nice Solution Sir

niceSolutionSir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com