Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 165215 by HongKing last updated on 27/Jan/22

Find:   Σ_(n=1) ^∞  tan^(−1)  ((1/n^2 ))

$$\mathrm{Find}:\:\:\:\underset{\boldsymbol{\mathrm{n}}=\mathrm{1}} {\overset{\infty} {\sum}}\:\mathrm{tan}^{−\mathrm{1}} \:\left(\frac{\mathrm{1}}{\mathrm{n}^{\mathrm{2}} }\right) \\ $$

Answered by mindispower last updated on 27/Jan/22

S=Σtan^(−1) ((1/n^2 ))=Σ_(n≥1) arg(n^2 +i)=argΠ_(n≥1) (1+(i/n^2 ))  ((sin(πx))/(πx))=Π_(n≥1) (1−(x^2 /n^2 ))  x=e^((i3π)/4)   ((sin(−(π/( (√2)))+((iπ)/( (√2)))))/(πe^((3iπ)/4) ))=Π_(n≥1) (1+(i/n^2 ))  =((sin(−(π/( (√2))))cos(((iπ)/( (√3))))+cos((π/( (√2))))sin(((iπ)/( (√2)))))/(πe^((3iπ)/4) ))  =(e^(−((3iπ)/4)) /π)(sin((π/( (√2))))ch((π/( (√2))))+ish((π/( (√2))))cos((π/( (√2)))))  =−(1/(π(√2)))(sin((π/( (√2))))ch((π/( (√2))))−sh((π/( (√2))))cos((π/( (√2))))+i(sin((π/( (√2))))ch((π/( (√2))))+sh((π/( (√2))))cos((π/( (√2)))))  S=arg{−(1/(π(√2)))(sin((π/( (√2))))ch((π/( (√2))))−sh((π/( (√2))))cos((π/( (√2))))+i(sin((π/( (√2))))ch((π/( (√2))))+sh((π/( (√2))))cos((π/( (√2)))))}      S=tan^(−1) (((1+th((π/( (√2))))cot((π/( (√2)))))/(1−th((π/( (√2))))cot((π/( (√2)))))))  Σ_(n≥1) tan^(−1) ((1/n^2 ))=tan^(−1) (((1+th((π/( (√2))))cot((π/( (√2)))))/(1−th((π/( (√2))))cot((π/( (√2)))))))

$${S}=\Sigma\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\right)=\underset{{n}\geqslant\mathrm{1}} {\sum}{arg}\left({n}^{\mathrm{2}} +{i}\right)={arg}\underset{{n}\geqslant\mathrm{1}} {\prod}\left(\mathrm{1}+\frac{{i}}{{n}^{\mathrm{2}} }\right) \\ $$$$\frac{{sin}\left(\pi{x}\right)}{\pi{x}}=\underset{{n}\geqslant\mathrm{1}} {\prod}\left(\mathrm{1}−\frac{{x}^{\mathrm{2}} }{{n}^{\mathrm{2}} }\right) \\ $$$${x}={e}^{\frac{{i}\mathrm{3}\pi}{\mathrm{4}}} \\ $$$$\frac{{sin}\left(−\frac{\pi}{\:\sqrt{\mathrm{2}}}+\frac{{i}\pi}{\:\sqrt{\mathrm{2}}}\right)}{\pi{e}^{\frac{\mathrm{3}{i}\pi}{\mathrm{4}}} }=\underset{{n}\geqslant\mathrm{1}} {\prod}\left(\mathrm{1}+\frac{{i}}{{n}^{\mathrm{2}} }\right) \\ $$$$=\frac{{sin}\left(−\frac{\pi}{\:\sqrt{\mathrm{2}}}\right){cos}\left(\frac{{i}\pi}{\:\sqrt{\mathrm{3}}}\right)+{cos}\left(\frac{\pi}{\:\sqrt{\mathrm{2}}}\right){sin}\left(\frac{{i}\pi}{\:\sqrt{\mathrm{2}}}\right)}{\pi{e}^{\frac{\mathrm{3}{i}\pi}{\mathrm{4}}} } \\ $$$$=\frac{{e}^{−\frac{\mathrm{3}{i}\pi}{\mathrm{4}}} }{\pi}\left({sin}\left(\frac{\pi}{\:\sqrt{\mathrm{2}}}\right){ch}\left(\frac{\pi}{\:\sqrt{\mathrm{2}}}\right)+{ish}\left(\frac{\pi}{\:\sqrt{\mathrm{2}}}\right){cos}\left(\frac{\pi}{\:\sqrt{\mathrm{2}}}\right)\right) \\ $$$$=−\frac{\mathrm{1}}{\pi\sqrt{\mathrm{2}}}\left({sin}\left(\frac{\pi}{\:\sqrt{\mathrm{2}}}\right){ch}\left(\frac{\pi}{\:\sqrt{\mathrm{2}}}\right)−{sh}\left(\frac{\pi}{\:\sqrt{\mathrm{2}}}\right){cos}\left(\frac{\pi}{\:\sqrt{\mathrm{2}}}\right)+{i}\left({sin}\left(\frac{\pi}{\:\sqrt{\mathrm{2}}}\right){ch}\left(\frac{\pi}{\:\sqrt{\mathrm{2}}}\right)+{sh}\left(\frac{\pi}{\:\sqrt{\mathrm{2}}}\right){cos}\left(\frac{\pi}{\:\sqrt{\mathrm{2}}}\right)\right)\right. \\ $$$${S}={arg}\left\{−\frac{\mathrm{1}}{\pi\sqrt{\mathrm{2}}}\left({sin}\left(\frac{\pi}{\:\sqrt{\mathrm{2}}}\right){ch}\left(\frac{\pi}{\:\sqrt{\mathrm{2}}}\right)−{sh}\left(\frac{\pi}{\:\sqrt{\mathrm{2}}}\right){cos}\left(\frac{\pi}{\:\sqrt{\mathrm{2}}}\right)+{i}\left({sin}\left(\frac{\pi}{\:\sqrt{\mathrm{2}}}\right){ch}\left(\frac{\pi}{\:\sqrt{\mathrm{2}}}\right)+{sh}\left(\frac{\pi}{\:\sqrt{\mathrm{2}}}\right){cos}\left(\frac{\pi}{\:\sqrt{\mathrm{2}}}\right)\right)\right\}\right. \\ $$$$ \\ $$$$ \\ $$$${S}=\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{1}+{th}\left(\frac{\pi}{\:\sqrt{\mathrm{2}}}\right){cot}\left(\frac{\pi}{\:\sqrt{\mathrm{2}}}\right)}{\mathrm{1}−{th}\left(\frac{\pi}{\:\sqrt{\mathrm{2}}}\right){cot}\left(\frac{\pi}{\:\sqrt{\mathrm{2}}}\right)}\right) \\ $$$$\underset{{n}\geqslant\mathrm{1}} {\sum}\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\right)=\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{1}+{th}\left(\frac{\pi}{\:\sqrt{\mathrm{2}}}\right){cot}\left(\frac{\pi}{\:\sqrt{\mathrm{2}}}\right)}{\mathrm{1}−{th}\left(\frac{\pi}{\:\sqrt{\mathrm{2}}}\right){cot}\left(\frac{\pi}{\:\sqrt{\mathrm{2}}}\right)}\right) \\ $$

Commented by HongKing last updated on 28/Jan/22

very nice solution thank you dear Sir

$$\mathrm{very}\:\mathrm{nice}\:\mathrm{solution}\:\mathrm{thank}\:\mathrm{you}\:\mathrm{dear}\:\mathrm{Sir} \\ $$

Commented by mindispower last updated on 28/Jan/22

Withe Pleasur have a nice day

$${Withe}\:{Pleasur}\:{have}\:{a}\:{nice}\:{day} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com