Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 165217 by ajfour last updated on 27/Jan/22

Commented by mr W last updated on 28/Jan/22

it should be possible for any a>0.

$${it}\:{should}\:{be}\:{possible}\:{for}\:{any}\:{a}>\mathrm{0}. \\ $$

Commented by mr W last updated on 28/Jan/22

nice question sir!  it seems to have no unique solution.  that means it is possible for a range  of values of a, not a single one.

$${nice}\:{question}\:{sir}! \\ $$$${it}\:{seems}\:{to}\:{have}\:{no}\:{unique}\:{solution}. \\ $$$${that}\:{means}\:{it}\:{is}\:{possible}\:{for}\:{a}\:{range} \\ $$$${of}\:{values}\:{of}\:{a},\:{not}\:{a}\:{single}\:{one}. \\ $$

Commented by mr W last updated on 28/Jan/22

Commented by mr W last updated on 28/Jan/22

Commented by ajfour last updated on 28/Jan/22

Lets have the range then..  Thanks Sir!

$${Lets}\:{have}\:{the}\:{range}\:{then}.. \\ $$$${Thanks}\:{Sir}! \\ $$

Answered by mr W last updated on 28/Jan/22

Commented by mr W last updated on 28/Jan/22

we take O as origin.  let m=tan θ, k=tan ϕ  A(0,1)  B(a,0)  C_1 (a−r,1−r)  C_2 (h,r)  eqn. of OE:  mx−y=0  eqn. of AD:  kx+y−1=0    r(√(m^2 +1))=(a−r)m−(1−r)  r(√(m^2 +1))=hm−r  (a−r)m−(1−r)=hm−r  ⇒h=a−r−((1−2r)/m) ✓  r(√(m^2 +1))=(a−r)m−(1−r)  ⇒r=((am−1)/(m+(√(m^2 −1))−1)) ✓    r(√(k^2 +1))=(a−r)k+(1−r)−1  r(√(k^2 +1))=−(hk+r−1)  (a−r)k+(1−r)−1=−(hk+r−1)  1−(a−r)k=hk  ⇒h=(1/k)−(a−r) ✓  r(√(k^2 +1))=−[1−(a−r)k+r−1]  ⇒r=((ak)/( 1+k+(√(k^2 +1)))) ✓    (1/k)−a+r=a−r−((1−2r)/m)  (1/k)=2(a−r)−((1−2r)/m)  (1/k)=2a−(1/m)+2((1/m)−1)r  ⇒k=(1/(2a−(1/m)+2((1/m)−1)r)) ✓    for any given a we can obtain m from  ((am−1)/(m+(√(m^2 −1))−1))=((ak)/( 1+k+(√(k^2 +1))))

$${we}\:{take}\:{O}\:{as}\:{origin}. \\ $$$${let}\:{m}=\mathrm{tan}\:\theta,\:{k}=\mathrm{tan}\:\varphi \\ $$$${A}\left(\mathrm{0},\mathrm{1}\right) \\ $$$${B}\left({a},\mathrm{0}\right) \\ $$$${C}_{\mathrm{1}} \left({a}−{r},\mathrm{1}−{r}\right) \\ $$$${C}_{\mathrm{2}} \left({h},{r}\right) \\ $$$${eqn}.\:{of}\:{OE}: \\ $$$${mx}−{y}=\mathrm{0} \\ $$$${eqn}.\:{of}\:{AD}: \\ $$$${kx}+{y}−\mathrm{1}=\mathrm{0} \\ $$$$ \\ $$$${r}\sqrt{{m}^{\mathrm{2}} +\mathrm{1}}=\left({a}−{r}\right){m}−\left(\mathrm{1}−{r}\right) \\ $$$${r}\sqrt{{m}^{\mathrm{2}} +\mathrm{1}}={hm}−{r} \\ $$$$\left({a}−{r}\right){m}−\left(\mathrm{1}−{r}\right)={hm}−{r} \\ $$$$\Rightarrow{h}={a}−{r}−\frac{\mathrm{1}−\mathrm{2}{r}}{{m}}\:\checkmark \\ $$$${r}\sqrt{{m}^{\mathrm{2}} +\mathrm{1}}=\left({a}−{r}\right){m}−\left(\mathrm{1}−{r}\right) \\ $$$$\Rightarrow{r}=\frac{{am}−\mathrm{1}}{{m}+\sqrt{{m}^{\mathrm{2}} −\mathrm{1}}−\mathrm{1}}\:\checkmark \\ $$$$ \\ $$$${r}\sqrt{{k}^{\mathrm{2}} +\mathrm{1}}=\left({a}−{r}\right){k}+\left(\mathrm{1}−{r}\right)−\mathrm{1} \\ $$$${r}\sqrt{{k}^{\mathrm{2}} +\mathrm{1}}=−\left({hk}+{r}−\mathrm{1}\right) \\ $$$$\left({a}−{r}\right){k}+\left(\mathrm{1}−{r}\right)−\mathrm{1}=−\left({hk}+{r}−\mathrm{1}\right) \\ $$$$\mathrm{1}−\left({a}−{r}\right){k}={hk} \\ $$$$\Rightarrow{h}=\frac{\mathrm{1}}{{k}}−\left({a}−{r}\right)\:\checkmark \\ $$$${r}\sqrt{{k}^{\mathrm{2}} +\mathrm{1}}=−\left[\mathrm{1}−\left({a}−{r}\right){k}+{r}−\mathrm{1}\right] \\ $$$$\Rightarrow{r}=\frac{{ak}}{\:\mathrm{1}+{k}+\sqrt{{k}^{\mathrm{2}} +\mathrm{1}}}\:\checkmark \\ $$$$ \\ $$$$\frac{\mathrm{1}}{{k}}−{a}+{r}={a}−{r}−\frac{\mathrm{1}−\mathrm{2}{r}}{{m}} \\ $$$$\frac{\mathrm{1}}{{k}}=\mathrm{2}\left({a}−{r}\right)−\frac{\mathrm{1}−\mathrm{2}{r}}{{m}} \\ $$$$\frac{\mathrm{1}}{{k}}=\mathrm{2}{a}−\frac{\mathrm{1}}{{m}}+\mathrm{2}\left(\frac{\mathrm{1}}{{m}}−\mathrm{1}\right){r} \\ $$$$\Rightarrow{k}=\frac{\mathrm{1}}{\mathrm{2}{a}−\frac{\mathrm{1}}{{m}}+\mathrm{2}\left(\frac{\mathrm{1}}{{m}}−\mathrm{1}\right){r}}\:\checkmark \\ $$$$ \\ $$$${for}\:{any}\:{given}\:{a}\:{we}\:{can}\:{obtain}\:{m}\:{from} \\ $$$$\frac{{am}−\mathrm{1}}{{m}+\sqrt{{m}^{\mathrm{2}} −\mathrm{1}}−\mathrm{1}}=\frac{{ak}}{\:\mathrm{1}+{k}+\sqrt{{k}^{\mathrm{2}} +\mathrm{1}}}\: \\ $$

Commented by mr W last updated on 28/Jan/22

Commented by mr W last updated on 28/Jan/22

Commented by mr W last updated on 28/Jan/22

Commented by ajfour last updated on 28/Jan/22

Thanks sir, i will go through..

$${Thanks}\:{sir},\:{i}\:{will}\:{go}\:{through}.. \\ $$

Commented by Tawa11 last updated on 28/Jan/22

Great sir

$$\mathrm{Great}\:\mathrm{sir} \\ $$

Answered by ajfour last updated on 28/Jan/22

Commented by ajfour last updated on 28/Jan/22

tan φ=(r/(b+r))  ;   tan θ=(r/(a−r))  cos 2θ=r+rcosec φsin (2θ+φ)  (a+b)(1)=cot 2φ+2rcosec 2φ  .....

$$\mathrm{tan}\:\phi=\frac{{r}}{{b}+{r}}\:\:;\:\:\:\mathrm{tan}\:\theta=\frac{{r}}{{a}−{r}} \\ $$$$\mathrm{cos}\:\mathrm{2}\theta={r}+{r}\mathrm{cosec}\:\phi\mathrm{sin}\:\left(\mathrm{2}\theta+\phi\right) \\ $$$$\left({a}+{b}\right)\left(\mathrm{1}\right)=\mathrm{cot}\:\mathrm{2}\phi+\mathrm{2}{r}\mathrm{cosec}\:\mathrm{2}\phi \\ $$$$..... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com