Question and Answers Forum

All Questions      Topic List

Mensuration Questions

Previous in All Question      Next in All Question      

Previous in Mensuration      Next in Mensuration      

Question Number 165232 by Neils last updated on 27/Jan/22

Commented by bobhans last updated on 30/Jan/22

Answered by FelipeLz last updated on 27/Jan/22

5^(log_(4/5) (5))  = e^(ln(5)log_(4/5) (5))  = e^((ln^2 (5))/(ln(4)−ln(5)))   4^(log_(4/5) (4))  = e^(ln(4)log_(4/5) (4))  = e^((ln^2 (4))/(ln(4)−ln(5)))   (e^((ln^2 (5))/(ln(4)−ln(5))) /e^((ln^2 (4))/(ln(4)−ln(5))) ) = e^((ln^2 (5)−ln^2 (4))/(ln(4)−ln(5)))  = e^((−[ln(4)−ln(5)][ln(4)+ln(5)])/(ln(4)−ln(5))) = e^(−[ln(4)+ln(5)])  = e^(−ln(20))  = (1/(20))

$$\mathrm{5}^{\mathrm{log}_{\frac{\mathrm{4}}{\mathrm{5}}} \left(\mathrm{5}\right)} \:=\:{e}^{\mathrm{ln}\left(\mathrm{5}\right)\mathrm{log}_{\frac{\mathrm{4}}{\mathrm{5}}} \left(\mathrm{5}\right)} \:=\:{e}^{\frac{\mathrm{ln}^{\mathrm{2}} \left(\mathrm{5}\right)}{\mathrm{ln}\left(\mathrm{4}\right)−\mathrm{ln}\left(\mathrm{5}\right)}} \\ $$$$\mathrm{4}^{\mathrm{log}_{\frac{\mathrm{4}}{\mathrm{5}}} \left(\mathrm{4}\right)} \:=\:{e}^{\mathrm{ln}\left(\mathrm{4}\right)\mathrm{log}_{\frac{\mathrm{4}}{\mathrm{5}}} \left(\mathrm{4}\right)} \:=\:{e}^{\frac{\mathrm{ln}^{\mathrm{2}} \left(\mathrm{4}\right)}{\mathrm{ln}\left(\mathrm{4}\right)−\mathrm{ln}\left(\mathrm{5}\right)}} \\ $$$$\frac{{e}^{\frac{\mathrm{ln}^{\mathrm{2}} \left(\mathrm{5}\right)}{\mathrm{ln}\left(\mathrm{4}\right)−\mathrm{ln}\left(\mathrm{5}\right)}} }{{e}^{\frac{\mathrm{ln}^{\mathrm{2}} \left(\mathrm{4}\right)}{\mathrm{ln}\left(\mathrm{4}\right)−\mathrm{ln}\left(\mathrm{5}\right)}} }\:=\:{e}^{\frac{\mathrm{ln}^{\mathrm{2}} \left(\mathrm{5}\right)−\mathrm{ln}^{\mathrm{2}} \left(\mathrm{4}\right)}{\mathrm{ln}\left(\mathrm{4}\right)−\mathrm{ln}\left(\mathrm{5}\right)}} \:=\:{e}^{\frac{−\left[\mathrm{ln}\left(\mathrm{4}\right)−\mathrm{ln}\left(\mathrm{5}\right)\right]\left[\mathrm{ln}\left(\mathrm{4}\right)+\mathrm{ln}\left(\mathrm{5}\right)\right]}{\mathrm{ln}\left(\mathrm{4}\right)−\mathrm{ln}\left(\mathrm{5}\right)}} =\:{e}^{−\left[\mathrm{ln}\left(\mathrm{4}\right)+\mathrm{ln}\left(\mathrm{5}\right)\right]} \:=\:{e}^{−\mathrm{ln}\left(\mathrm{20}\right)} \:=\:\frac{\mathrm{1}}{\mathrm{20}} \\ $$

Commented by Neils last updated on 27/Jan/22

Nice Solution

$${Nice}\:{Solution} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com