Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 165253 by LEKOUMA last updated on 28/Jan/22

Answered by mindispower last updated on 28/Jan/22

sin(x)=x−(x^3 /6)+o(x^3 )

sin(x)=xx36+o(x3)

Answered by cortano1 last updated on 28/Jan/22

=−(1/(18))

=118

Answered by Ar Brandon last updated on 28/Jan/22

A=lim_(x→0) ((xsin(sinx)−sin^2 x)/x^6 )      =lim_(x→0) ((x(sinx−((sin^3 x)/6))−(x−(x^3 /6))^2 )/x^6 )      =lim_(x→0) ((x(x−(x^3 /6)−(1/6)(x−(x^3 /6))^3 )−(x^2 −(x^4 /3)+(x^6 /(36))))/x^6 )      =lim_(x→0) (1/x^6 ){x^2 −(x^4 /6)−(1/6)(x^4 −(x^6 /2)+(x^8 /(12))−(x^(10) /(216)))−x^2 +(x^4 /3)−(x^6 /(36))}      =lim_(x→0) (1/x^6 )((x^6 /(18))−(x^8 /(72))+(x^(10) /(1296)))=lim_(x→0) ((1/(18))−(x^2 /(72))+(x^4 /(1296)))=(1/(18))

A=limx0xsin(sinx)sin2xx6=limx0x(sinxsin3x6)(xx36)2x6=limx0x(xx3616(xx36)3)(x2x43+x636)x6=limx01x6{x2x4616(x4x62+x812x10216)x2+x43x636}=limx01x6(x618x872+x101296)=limx0(118x272+x41296)=118

Commented by LEKOUMA last updated on 28/Jan/22

Thank

Thank

Terms of Service

Privacy Policy

Contact: info@tinkutara.com