Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 165271 by mnjuly1970 last updated on 28/Jan/22

       Let ,   f : [ 0 , 1 ] → R  is a continuous       function , prove that :             lim_( n→ ∞)  ∫_0 ^( 1) (( n f(x))/(1+ n^2  x^( 2) )) dx = (π/2) f (0 )       −−− proof −−−           S_( n)  = [∫_(0 ) ^( (1/( (√n))))  (( n. f(x))/(1 + n^( 2) x^( 2) )) dx =Ω_( n) ]+[ ∫_(1/( (√n))) ^( 1)  ((n.f (x))/(1 + n^( 2) x^( 2) )) dx = Φ_( n)  ]        Ω_( n)  =_(∃ t_( n) ∈ ( 0 , (1/( (√n) )) )) ^(MeanValueTheorem( first))   f (t_( n)  )∫_(0 ) ^( (1/( (√n))))  (( n)/(1 + n^( 2) x^( 2) ))dx               =  f ( t_( n) ) ( tan^( −1) ( (√n) ))           lim_( n→∞)  (Ω_( n)  )  = (π/2) f (lim_( n→∞) ( t_( n) ) ) = (π/2) f (0 )           Φ_( n) = ∫_(1/( (√n))) ^( 1) (( n. f(x) )/(1 + n^( 2) x^( 2) )) dx  ⇒_(∃ M >0) ^(f  is bounded)  ∣ Φ_( n)  ∣ ≤ M.∫_(1/( (√n))) ^( 1) (n/(1+ n^( 2) x^( 2) )) dx           ⇒  ∣ Φ_( n) ∣ ≤ M . ( tan^( −1) ( n )− tan^( −1) ( (√n) ))           lim_( n→ ∞)  ∣ Φ_( n) ∣ = 0  ⇒ lim_( n→∞)  Φ_( n)  =0            ∴    lim_( n→ ∞)  (  S_( n)  ) = (π/2) f (0 )    ■ m.n

$$ \\ $$$$\:\:\:\:\:\mathrm{L}{et}\:,\:\:\:{f}\::\:\left[\:\mathrm{0}\:,\:\mathrm{1}\:\right]\:\rightarrow\:\mathbb{R}\:\:{is}\:{a}\:{continuous}\: \\ $$$$\:\:\:\:{function}\:,\:{prove}\:{that}\::\:\:\: \\ $$$$\:\:\:\:\:\:\:\:{lim}_{\:{n}\rightarrow\:\infty} \:\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\:{n}\:{f}\left({x}\right)}{\mathrm{1}+\:{n}^{\mathrm{2}} \:{x}^{\:\mathrm{2}} }\:{dx}\:=\:\frac{\pi}{\mathrm{2}}\:{f}\:\left(\mathrm{0}\:\right) \\ $$$$\:\:\:\:\:−−−\:{proof}\:−−− \\ $$$$\:\:\:\:\:\:\:\:\:\mathrm{S}_{\:{n}} \:=\:\left[\int_{\mathrm{0}\:} ^{\:\frac{\mathrm{1}}{\:\sqrt{{n}}}} \:\frac{\:{n}.\:{f}\left({x}\right)}{\mathrm{1}\:+\:{n}^{\:\mathrm{2}} {x}^{\:\mathrm{2}} }\:{dx}\:=\Omega_{\:{n}} \right]+\left[\:\int_{\frac{\mathrm{1}}{\:\sqrt{{n}}}} ^{\:\mathrm{1}} \:\frac{{n}.{f}\:\left({x}\right)}{\mathrm{1}\:+\:{n}^{\:\mathrm{2}} {x}^{\:\mathrm{2}} }\:{dx}\:=\:\Phi_{\:{n}} \:\right] \\ $$$$\:\:\:\:\:\:\Omega_{\:{n}} \:\underset{\exists\:{t}_{\:{n}} \in\:\left(\:\mathrm{0}\:,\:\frac{\mathrm{1}}{\:\sqrt{{n}}\:}\:\right)} {\overset{\mathrm{M}{ean}\mathrm{V}{alue}\mathrm{T}{heorem}\left(\:{first}\right)} {=}}\:\:{f}\:\left({t}_{\:{n}} \:\right)\int_{\mathrm{0}\:} ^{\:\frac{\mathrm{1}}{\:\sqrt{{n}}}} \:\frac{\:{n}}{\mathrm{1}\:+\:{n}^{\:\mathrm{2}} {x}^{\:\mathrm{2}} }{dx} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:=\:\:{f}\:\left(\:{t}_{\:{n}} \right)\:\left(\:{tan}^{\:−\mathrm{1}} \left(\:\sqrt{{n}}\:\right)\right) \\ $$$$\:\:\:\:\:\:\:\:\:{lim}_{\:{n}\rightarrow\infty} \:\left(\Omega_{\:{n}} \:\right)\:\:=\:\frac{\pi}{\mathrm{2}}\:{f}\:\left({lim}_{\:{n}\rightarrow\infty} \left(\:{t}_{\:{n}} \right)\:\right)\:=\:\frac{\pi}{\mathrm{2}}\:{f}\:\left(\mathrm{0}\:\right)\: \\ $$$$\:\:\:\:\:\:\:\:\Phi_{\:{n}} =\:\int_{\frac{\mathrm{1}}{\:\sqrt{{n}}}} ^{\:\mathrm{1}} \frac{\:{n}.\:{f}\left({x}\right)\:}{\mathrm{1}\:+\:{n}^{\:\mathrm{2}} {x}^{\:\mathrm{2}} }\:{dx}\:\:\underset{\exists\:\mathrm{M}\:>\mathrm{0}} {\overset{{f}\:\:{is}\:{bounded}} {\Rightarrow}}\:\mid\:\Phi_{\:{n}} \:\mid\:\leqslant\:\mathrm{M}.\int_{\frac{\mathrm{1}}{\:\sqrt{{n}}}} ^{\:\mathrm{1}} \frac{{n}}{\mathrm{1}+\:{n}^{\:\mathrm{2}} {x}^{\:\mathrm{2}} }\:{dx} \\ $$$$\:\:\:\:\:\:\:\:\:\Rightarrow\:\:\mid\:\Phi_{\:{n}} \mid\:\leqslant\:\mathrm{M}\:.\:\left(\:{tan}^{\:−\mathrm{1}} \left(\:{n}\:\right)−\:{tan}^{\:−\mathrm{1}} \left(\:\sqrt{{n}}\:\right)\right) \\ $$$$\:\:\:\:\:\:\:\:\:{lim}_{\:{n}\rightarrow\:\infty} \:\mid\:\Phi_{\:{n}} \mid\:=\:\mathrm{0}\:\:\Rightarrow\:{lim}_{\:{n}\rightarrow\infty} \:\Phi_{\:{n}} \:=\mathrm{0} \\ $$$$\:\:\:\:\:\:\:\:\:\:\therefore\:\:\:\:{lim}_{\:{n}\rightarrow\:\infty} \:\left(\:\:\mathrm{S}_{\:{n}} \:\right)\:=\:\frac{\pi}{\mathrm{2}}\:{f}\:\left(\mathrm{0}\:\right)\:\:\:\:\blacksquare\:{m}.{n} \\ $$$$\:\:\:\:\: \\ $$

Answered by mindispower last updated on 28/Jan/22

nice Result Thanx sir

$${nice}\:{Result}\:{Thanx}\:{sir} \\ $$$$ \\ $$

Commented by mnjuly1970 last updated on 28/Jan/22

    thank you so much sir...

$$\:\:\:\:{thank}\:{you}\:{so}\:{much}\:{sir}... \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com