Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 165273 by mnjuly1970 last updated on 28/Jan/22

        lim_( n→ ∞)  ∫_0 ^( 1) ((  n . e^( 1− x^( 2) ) )/( 1 + n^( 2)  x^( 2) )) dx =?            −−−−−−

$$ \\ $$$$\:\:\:\:\:\:{lim}_{\:{n}\rightarrow\:\infty} \:\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{\:\:{n}\:.\:{e}^{\:\mathrm{1}−\:{x}^{\:\mathrm{2}} } }{\:\mathrm{1}\:+\:{n}^{\:\mathrm{2}} \:{x}^{\:\mathrm{2}} }\:{dx}\:=? \\ $$$$\:\:\:\:\:\:\:\:\:\:−−−−−− \\ $$

Answered by mindispower last updated on 28/Jan/22

∫(n/(1+n^2 x^2 ))dx=arctan(nx)  lim_(n→∞) [arctan(nx)e^(1−x^2 ) ]_0 ^1 +2∫_0 ^1 xe^(1−x^2 ) arctan(nx)dx  =lim_(n→∞) 2∫_0 ^1 arctan(nx).xe^(1−x^2 ) dx  2∫_0 ^1 xtan^(−1) (nx)e^(1−x^2 ) dx≤2∫_0 ^1 (π/2)xe^(1−x^2 ) =(π/2)  we Use “Theorem de Conergence Dominee”  its The Name in france in English I dont Know  How We Call iT  lim_(n→∞) 2∫_0 ^1 xtan^(−1) (nx)e^(1−x^2 ) dx=∫_0 ^1 lim_(n→∞) 2tan^(−1) (nx).xe^(1−x^2 ) dx  =∫_0 ^1 (π/2)(2xe^(1−x^2 ) )dx.(π/2)[−e^(1−x^2 ) ]_0 ^1 =(π/2)e

$$\int\frac{{n}}{\mathrm{1}+{n}^{\mathrm{2}} {x}^{\mathrm{2}} }{dx}={arctan}\left({nx}\right) \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\left[{arctan}\left({nx}\right){e}^{\mathrm{1}−{x}^{\mathrm{2}} } \right]_{\mathrm{0}} ^{\mathrm{1}} +\mathrm{2}\int_{\mathrm{0}} ^{\mathrm{1}} {xe}^{\mathrm{1}−{x}^{\mathrm{2}} } {arctan}\left({nx}\right){dx} \\ $$$$=\underset{{n}\rightarrow\infty} {\mathrm{lim}2}\int_{\mathrm{0}} ^{\mathrm{1}} {arctan}\left({nx}\right).{xe}^{\mathrm{1}−{x}^{\mathrm{2}} } {dx} \\ $$$$\mathrm{2}\int_{\mathrm{0}} ^{\mathrm{1}} {x}\mathrm{tan}^{−\mathrm{1}} \left({nx}\right){e}^{\mathrm{1}−{x}^{\mathrm{2}} } {dx}\leqslant\mathrm{2}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\pi}{\mathrm{2}}{xe}^{\mathrm{1}−{x}^{\mathrm{2}} } =\frac{\pi}{\mathrm{2}} \\ $$$${we}\:{Use}\:``{Theorem}\:{de}\:{Conergence}\:{Dominee}'' \\ $$$${its}\:{The}\:{Name}\:{in}\:{france}\:{in}\:{English}\:{I}\:{dont}\:{Know} \\ $$$${How}\:{We}\:{Call}\:{iT} \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}2}\int_{\mathrm{0}} ^{\mathrm{1}} {x}\mathrm{tan}^{−\mathrm{1}} \left({nx}\right){e}^{\mathrm{1}−{x}^{\mathrm{2}} } {dx}=\int_{\mathrm{0}} ^{\mathrm{1}} \underset{{n}\rightarrow\infty} {\mathrm{lim}2tan}^{−\mathrm{1}} \left({nx}\right).{xe}^{\mathrm{1}−{x}^{\mathrm{2}} } {dx} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\pi}{\mathrm{2}}\left(\mathrm{2}{xe}^{\mathrm{1}−{x}^{\mathrm{2}} } \right){dx}.\frac{\pi}{\mathrm{2}}\left[−{e}^{\mathrm{1}−{x}^{\mathrm{2}} } \right]_{\mathrm{0}} ^{\mathrm{1}} =\frac{\pi}{\mathrm{2}}{e} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Commented by mnjuly1970 last updated on 28/Jan/22

  bravo , sir power ....very nice   solution      Dominating  convergence theorem...

$$\:\:{bravo}\:,\:{sir}\:{power}\:....{very}\:{nice} \\ $$$$\:{solution} \\ $$$$\:\:\:\:\mathrm{D}{ominating}\:\:{convergence}\:{theorem}... \\ $$

Commented by mindispower last updated on 02/Feb/22

Thanx Sir  Have  a Nice Day

$${Thanx}\:{Sir} \\ $$$${Have}\:\:{a}\:{Nice}\:{Day} \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com