All Questions Topic List
None Questions
Previous in All Question Next in All Question
Previous in None Next in None
Question Number 165349 by mkam last updated on 31/Jan/22
Answered by puissant last updated on 31/Jan/22
12n2=(2n+1)−(2n−1)1+(2n+1)(2n−1)⇒∑∞n=1arctan(12n2)=∑∞n=1{arctan(2n+1)−arctan(2n−1)}⇒∑∞n=1arctan(12n2)=limn→∞∑nk=1{arctan(2k+1)−arctan(2k−1)}=limn→∞(−arctan(1)+arctan(2n+1))(sommetelescopique).=−π4+π2=π4................Lepuissant............
Commented by puissant last updated on 31/Jan/22
=limk→∞∑kt=1arctan(2t+1)−arcan(2t−1)=limt→∞[arcan(3)−arctan(1)+arctan(5)−arctan(3)+arctan(7)−arctan(5)....+arctan(2k+1)−arctan(2k−1)]=limk→∞{−arctan(1)+arctan(2k+1)}=−π4+π2=π4.
Commented by mkam last updated on 31/Jan/22
sirhow∑∞k=1{arctan(2k+1)−arctan(2k−1)}=−arctan(1)+arctan(2n+1)
Terms of Service
Privacy Policy
Contact: info@tinkutara.com