Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 165431 by ajfour last updated on 01/Feb/22

Answered by mr W last updated on 01/Feb/22

Commented by mr W last updated on 01/Feb/22

P(p, a^2 −p^2 )  Q(h, r)  tan θ=2p  ⇒cos θ=(1/( (√(1+4p^2 )))), sin θ=((2p)/( (√(1+4p^2 ))))  r=a^2 −p^2 +r cos θ  ⇒r=((a^2 −p^2 )/(1−(1/( (√(1+4p^2 ))))))  h=p+r sin θ=p+((2pr)/( (√(1+4p^2 ))))  tangent line: y=c+mx  m=(1/(tan θ))=(1/(2p))  y=c+(x/(2p))  c+(x/(2p))=a^2 −x^2   x^2 +(x/(2p))+c−a^2 =0  Δ=(1/(4p^2 ))−4(c−a^2 )=0  ⇒c=(1/(16p^2 ))+a^2   (x/(2p))−y+(1/(16p^2 ))+a^2 =0  r=((∣(1/(2p))(p+((2pr)/( (√(1+4p^2 )))))−r+(1/(16p^2 ))+a^2 ∣)/( (√(1+(1/(4p^2 ))))))  r(√(1+(1/(4p^2 ))))=(1/(2p))(p+((2pr)/( (√(1+4p^2 )))))−r+(1/(16p^2 ))+a^2   ⇒(((a^2 −p^2 )(√(1+4p^2 )))/( (√(1+4p^2 ))−1))(((√(1+4p^2 ))/(2p))−(1/( (√(1+4p^2 ))))+1)=(1/2)+(1/(16p^2 ))+a^2

$${P}\left({p},\:{a}^{\mathrm{2}} −{p}^{\mathrm{2}} \right) \\ $$$${Q}\left({h},\:{r}\right) \\ $$$$\mathrm{tan}\:\theta=\mathrm{2}{p} \\ $$$$\Rightarrow\mathrm{cos}\:\theta=\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}+\mathrm{4}{p}^{\mathrm{2}} }},\:\mathrm{sin}\:\theta=\frac{\mathrm{2}{p}}{\:\sqrt{\mathrm{1}+\mathrm{4}{p}^{\mathrm{2}} }} \\ $$$${r}={a}^{\mathrm{2}} −{p}^{\mathrm{2}} +{r}\:\mathrm{cos}\:\theta \\ $$$$\Rightarrow{r}=\frac{{a}^{\mathrm{2}} −{p}^{\mathrm{2}} }{\mathrm{1}−\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}+\mathrm{4}{p}^{\mathrm{2}} }}} \\ $$$${h}={p}+{r}\:\mathrm{sin}\:\theta={p}+\frac{\mathrm{2}{pr}}{\:\sqrt{\mathrm{1}+\mathrm{4}{p}^{\mathrm{2}} }} \\ $$$${tangent}\:{line}:\:{y}={c}+{mx} \\ $$$${m}=\frac{\mathrm{1}}{\mathrm{tan}\:\theta}=\frac{\mathrm{1}}{\mathrm{2}{p}} \\ $$$${y}={c}+\frac{{x}}{\mathrm{2}{p}} \\ $$$${c}+\frac{{x}}{\mathrm{2}{p}}={a}^{\mathrm{2}} −{x}^{\mathrm{2}} \\ $$$${x}^{\mathrm{2}} +\frac{{x}}{\mathrm{2}{p}}+{c}−{a}^{\mathrm{2}} =\mathrm{0} \\ $$$$\Delta=\frac{\mathrm{1}}{\mathrm{4}{p}^{\mathrm{2}} }−\mathrm{4}\left({c}−{a}^{\mathrm{2}} \right)=\mathrm{0} \\ $$$$\Rightarrow{c}=\frac{\mathrm{1}}{\mathrm{16}{p}^{\mathrm{2}} }+{a}^{\mathrm{2}} \\ $$$$\frac{{x}}{\mathrm{2}{p}}−{y}+\frac{\mathrm{1}}{\mathrm{16}{p}^{\mathrm{2}} }+{a}^{\mathrm{2}} =\mathrm{0} \\ $$$${r}=\frac{\mid\frac{\mathrm{1}}{\mathrm{2}{p}}\left({p}+\frac{\mathrm{2}{pr}}{\:\sqrt{\mathrm{1}+\mathrm{4}{p}^{\mathrm{2}} }}\right)−{r}+\frac{\mathrm{1}}{\mathrm{16}{p}^{\mathrm{2}} }+{a}^{\mathrm{2}} \mid}{\:\sqrt{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{4}{p}^{\mathrm{2}} }}} \\ $$$${r}\sqrt{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{4}{p}^{\mathrm{2}} }}=\frac{\mathrm{1}}{\mathrm{2}{p}}\left({p}+\frac{\mathrm{2}{pr}}{\:\sqrt{\mathrm{1}+\mathrm{4}{p}^{\mathrm{2}} }}\right)−{r}+\frac{\mathrm{1}}{\mathrm{16}{p}^{\mathrm{2}} }+{a}^{\mathrm{2}} \\ $$$$\Rightarrow\frac{\left({a}^{\mathrm{2}} −{p}^{\mathrm{2}} \right)\sqrt{\mathrm{1}+\mathrm{4}{p}^{\mathrm{2}} }}{\:\sqrt{\mathrm{1}+\mathrm{4}{p}^{\mathrm{2}} }−\mathrm{1}}\left(\frac{\sqrt{\mathrm{1}+\mathrm{4}{p}^{\mathrm{2}} }}{\mathrm{2}{p}}−\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}+\mathrm{4}{p}^{\mathrm{2}} }}+\mathrm{1}\right)=\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{16}{p}^{\mathrm{2}} }+{a}^{\mathrm{2}} \\ $$

Commented by mr W last updated on 01/Feb/22

Commented by ajfour last updated on 01/Feb/22

But sir, in your solution    r=f(p) , p isnt determined   though...

$${But}\:{sir},\:{in}\:{your}\:{solution} \\ $$$$\:\:{r}={f}\left({p}\right)\:,\:{p}\:{isnt}\:{determined} \\ $$$$\:{though}... \\ $$

Commented by mr W last updated on 01/Feb/22

i can only get an equation for p,  which can be solved numerically  for a given a. with this p we can   calculate r.  i can′t find an equation directly for  r.

$${i}\:{can}\:{only}\:{get}\:{an}\:{equation}\:{for}\:{p}, \\ $$$${which}\:{can}\:{be}\:{solved}\:{numerically} \\ $$$${for}\:{a}\:{given}\:{a}.\:{with}\:{this}\:{p}\:{we}\:{can}\: \\ $$$${calculate}\:{r}. \\ $$$${i}\:{can}'{t}\:{find}\:{an}\:{equation}\:{directly}\:{for} \\ $$$${r}. \\ $$

Commented by mr W last updated on 01/Feb/22

or we can take p as parameter and  show the relationship between a  and r:

$${or}\:{we}\:{can}\:{take}\:{p}\:{as}\:{parameter}\:{and} \\ $$$${show}\:{the}\:{relationship}\:{between}\:{a} \\ $$$${and}\:{r}: \\ $$

Commented by mr W last updated on 01/Feb/22

Commented by ajfour last updated on 01/Feb/22

Yeah, even i tried n got two eqns. in r, p, a. Thanks sir, i shall chase it bit more..

Commented by Tawa11 last updated on 02/Feb/22

Great sir

$$\mathrm{Great}\:\mathrm{sir} \\ $$

Answered by ajfour last updated on 02/Feb/22

Commented by ajfour last updated on 02/Feb/22

y=(x/(2p))+c=a^2 −x^2       (tan θ=(1/(2p)))  ⇒  x^2 +(x/(2p))+c−a^2 =0  x=p=−(1/(4p))+(√((1/(16p^2 ))+a^2 −c))  ⇒  p^2 +(1/2)=a^2 −c  ⇒  c=a^2 −((1/2)+p^2 )     ..(i)  Now  r−rsin θ=r−(r/( (√(1+4p^2 ))))           =a^2 −p^2   ⇒  r=((a^2 −p^2 )/(1−(1/( (√(1+4p^2 ))))))       ...(ii)  consider upper line     y=(x/(2p))+c+rsec θ    [now with ..(i)]    a^2 −x^2 =       (x/(2p))+a^2 −((1/2)+p^2 )+((r(√(1+4p^2 )))/(2p))  D=0  ⇒     (1/(4p^2 ))=((2r(√(1+4p^2 )))/p)−(2+4p^2 )  using  ..(ii)  (1/(4p^2 ))=((2(√(1+4p^2 )))/p)(((a^2 −p^2 )/(1−(1/( (√(1+4p^2 )))))))−(2+4p^2 )  ⇒   (2p+(1/(2p)))(√(2p))=((4(a^2 −p^2 ))/( (√((1/(2p))+2p))−(1/( (√(2p))))))  And   r=((a^2 −p^2 )/(1−(1/( (√(1+4p^2 ))))))  .

$${y}=\frac{{x}}{\mathrm{2}{p}}+{c}={a}^{\mathrm{2}} −{x}^{\mathrm{2}} \:\:\:\:\:\:\left(\mathrm{tan}\:\theta=\frac{\mathrm{1}}{\mathrm{2}{p}}\right) \\ $$$$\Rightarrow\:\:{x}^{\mathrm{2}} +\frac{{x}}{\mathrm{2}{p}}+{c}−{a}^{\mathrm{2}} =\mathrm{0} \\ $$$${x}={p}=−\frac{\mathrm{1}}{\mathrm{4}{p}}+\sqrt{\frac{\mathrm{1}}{\mathrm{16}{p}^{\mathrm{2}} }+{a}^{\mathrm{2}} −{c}} \\ $$$$\Rightarrow\:\:{p}^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{2}}={a}^{\mathrm{2}} −{c} \\ $$$$\Rightarrow\:\:{c}={a}^{\mathrm{2}} −\left(\frac{\mathrm{1}}{\mathrm{2}}+{p}^{\mathrm{2}} \right)\:\:\:\:\:..\left({i}\right) \\ $$$${Now} \\ $$$${r}−{r}\mathrm{sin}\:\theta={r}−\frac{{r}}{\:\sqrt{\mathrm{1}+\mathrm{4}{p}^{\mathrm{2}} }} \\ $$$$\:\:\:\:\:\:\:\:\:={a}^{\mathrm{2}} −{p}^{\mathrm{2}} \\ $$$$\Rightarrow\:\:{r}=\frac{{a}^{\mathrm{2}} −{p}^{\mathrm{2}} }{\mathrm{1}−\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}+\mathrm{4}{p}^{\mathrm{2}} }}}\:\:\:\:\:\:\:...\left({ii}\right) \\ $$$${consider}\:{upper}\:{line} \\ $$$$\:\:\:{y}=\frac{{x}}{\mathrm{2}{p}}+{c}+{r}\mathrm{sec}\:\theta\:\:\:\:\left[{now}\:{with}\:..\left({i}\right)\right] \\ $$$$\:\:{a}^{\mathrm{2}} −{x}^{\mathrm{2}} = \\ $$$$\:\:\:\:\:\frac{{x}}{\mathrm{2}{p}}+{a}^{\mathrm{2}} −\left(\frac{\mathrm{1}}{\mathrm{2}}+{p}^{\mathrm{2}} \right)+\frac{{r}\sqrt{\mathrm{1}+\mathrm{4}{p}^{\mathrm{2}} }}{\mathrm{2}{p}} \\ $$$${D}=\mathrm{0}\:\:\Rightarrow \\ $$$$\:\:\:\frac{\mathrm{1}}{\mathrm{4}{p}^{\mathrm{2}} }=\frac{\mathrm{2}{r}\sqrt{\mathrm{1}+\mathrm{4}{p}^{\mathrm{2}} }}{{p}}−\left(\mathrm{2}+\mathrm{4}{p}^{\mathrm{2}} \right) \\ $$$${using}\:\:..\left({ii}\right) \\ $$$$\frac{\mathrm{1}}{\mathrm{4}{p}^{\mathrm{2}} }=\frac{\mathrm{2}\sqrt{\mathrm{1}+\mathrm{4}{p}^{\mathrm{2}} }}{{p}}\left(\frac{{a}^{\mathrm{2}} −{p}^{\mathrm{2}} }{\mathrm{1}−\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}+\mathrm{4}{p}^{\mathrm{2}} }}}\right)−\left(\mathrm{2}+\mathrm{4}{p}^{\mathrm{2}} \right) \\ $$$$\Rightarrow \\ $$$$\:\left(\mathrm{2}{p}+\frac{\mathrm{1}}{\mathrm{2}{p}}\right)\sqrt{\mathrm{2}{p}}=\frac{\mathrm{4}\left({a}^{\mathrm{2}} −{p}^{\mathrm{2}} \right)}{\:\sqrt{\frac{\mathrm{1}}{\mathrm{2}{p}}+\mathrm{2}{p}}−\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}{p}}}} \\ $$$${And}\:\:\:{r}=\frac{{a}^{\mathrm{2}} −{p}^{\mathrm{2}} }{\mathrm{1}−\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}+\mathrm{4}{p}^{\mathrm{2}} }}}\:\:. \\ $$

Commented by ajfour last updated on 02/Feb/22

a=2 , p≈1.4906  , r ≈ 2.60728  a=3, p≈2.21163 , r≈5.27102

$${a}=\mathrm{2}\:,\:{p}\approx\mathrm{1}.\mathrm{4906}\:\:,\:{r}\:\approx\:\mathrm{2}.\mathrm{60728} \\ $$$${a}=\mathrm{3},\:{p}\approx\mathrm{2}.\mathrm{21163}\:,\:{r}\approx\mathrm{5}.\mathrm{27102} \\ $$

Commented by mr W last updated on 02/Feb/22

very fine sir!

$${very}\:{fine}\:{sir}! \\ $$

Commented by ajfour last updated on 02/Feb/22

Terms of Service

Privacy Policy

Contact: info@tinkutara.com