Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 165493 by SANOGO last updated on 02/Feb/22

calcul la somme de cette serie entiere  Σ_(n=0) ^(+oo) ((2n+3)/(2n+1))x^n

$${calcul}\:{la}\:{somme}\:{de}\:{cette}\:{serie}\:{entiere} \\ $$$$\underset{{n}=\mathrm{0}} {\overset{+{oo}} {\sum}}\frac{\mathrm{2}{n}+\mathrm{3}}{\mathrm{2}{n}+\mathrm{1}}{x}^{{n}} \\ $$

Answered by TheSupreme last updated on 02/Feb/22

S=Σ_(n=0) ^∞ (1+(2/(2n+1)))x^n   S=(1/(1−x))+Σ(2/(2n+1))x^n   x=s^2   S=(1/(1−s^2 ))+(2/s)Σ(1/(2n+1))s^(2n+1)   Σ(1/(2n+1))s^(2n+1) =Σ∫s^(2n) =∫Σs^(2n) =∫(1/(1−s^2 ))=arctanh(s)  S=(1/(1−x))+(1/( (√x)))arctanh((√x))  ∣x∣<1

$${S}=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left(\mathrm{1}+\frac{\mathrm{2}}{\mathrm{2}{n}+\mathrm{1}}\right){x}^{{n}} \\ $$$${S}=\frac{\mathrm{1}}{\mathrm{1}−{x}}+\Sigma\frac{\mathrm{2}}{\mathrm{2}{n}+\mathrm{1}}{x}^{{n}} \\ $$$${x}={s}^{\mathrm{2}} \\ $$$${S}=\frac{\mathrm{1}}{\mathrm{1}−{s}^{\mathrm{2}} }+\frac{\mathrm{2}}{{s}}\Sigma\frac{\mathrm{1}}{\mathrm{2}{n}+\mathrm{1}}{s}^{\mathrm{2}{n}+\mathrm{1}} \\ $$$$\Sigma\frac{\mathrm{1}}{\mathrm{2}{n}+\mathrm{1}}{s}^{\mathrm{2}{n}+\mathrm{1}} =\Sigma\int{s}^{\mathrm{2}{n}} =\int\Sigma{s}^{\mathrm{2}{n}} =\int\frac{\mathrm{1}}{\mathrm{1}−{s}^{\mathrm{2}} }={arctanh}\left({s}\right) \\ $$$${S}=\frac{\mathrm{1}}{\mathrm{1}−{x}}+\frac{\mathrm{1}}{\:\sqrt{{x}}}{arctanh}\left(\sqrt{{x}}\right) \\ $$$$\mid{x}\mid<\mathrm{1} \\ $$

Answered by Mathspace last updated on 02/Feb/22

S=Σ_(n=0) ^∞  x^n +2Σ_(n=0) ^∞  (x^n /(2n+1))  for ∣x∣<1  Σ_(n=0) ^∞  x^n =(1/(1−x))  Σ_(n=0) ^∞  (x^n /(2n+1))=(1/( (√x)))Σ_(n=0) ^(∞ )  ((((√x))^(2n+1) )/(2n+1))  =(1/( (√x)))ϕ((√x)) with ϕ(t)=Σ_(n=0) ^(∞ ) (t^(2n+1) /(2n+1))  ϕ^′ (t)=Σ_(n=0) ^∞  t^(2n)  =(1/(1−t^2 )) ⇒  ϕ(t)=∫(dt/(1−t^2 )) +C  =(1/2)∫((1/(1−t))+(1/(1+t)))dt  =(1/2)ln∣((1+t)/(1−t))∣ ⇒ϕ(t)=(1/2)ln∣((1+t)/(1−t))∣ +C  ϕ(0)=0=C ⇒ϕ(t)=(1/2)ln∣((1+t)/(1−t))∣ ⇒  S=(1/(1−x)) +(2/( (√x)))ϕ((√x))  =(1/(1−x))+(1/( (√x)))ln∣((1+(√x))/(1−(√x)))∣

$${S}=\sum_{{n}=\mathrm{0}} ^{\infty} \:{x}^{{n}} +\mathrm{2}\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{{x}^{{n}} }{\mathrm{2}{n}+\mathrm{1}} \\ $$$${for}\:\mid{x}\mid<\mathrm{1}\:\:\sum_{{n}=\mathrm{0}} ^{\infty} \:{x}^{{n}} =\frac{\mathrm{1}}{\mathrm{1}−{x}} \\ $$$$\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{{x}^{{n}} }{\mathrm{2}{n}+\mathrm{1}}=\frac{\mathrm{1}}{\:\sqrt{{x}}}\sum_{{n}=\mathrm{0}} ^{\infty\:} \:\frac{\left(\sqrt{{x}}\right)^{\mathrm{2}{n}+\mathrm{1}} }{\mathrm{2}{n}+\mathrm{1}} \\ $$$$=\frac{\mathrm{1}}{\:\sqrt{{x}}}\varphi\left(\sqrt{{x}}\right)\:{with}\:\varphi\left({t}\right)=\sum_{{n}=\mathrm{0}} ^{\infty\:} \frac{{t}^{\mathrm{2}{n}+\mathrm{1}} }{\mathrm{2}{n}+\mathrm{1}} \\ $$$$\varphi^{'} \left({t}\right)=\sum_{{n}=\mathrm{0}} ^{\infty} \:{t}^{\mathrm{2}{n}} \:=\frac{\mathrm{1}}{\mathrm{1}−{t}^{\mathrm{2}} }\:\Rightarrow \\ $$$$\varphi\left({t}\right)=\int\frac{{dt}}{\mathrm{1}−{t}^{\mathrm{2}} }\:+{C} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int\left(\frac{\mathrm{1}}{\mathrm{1}−{t}}+\frac{\mathrm{1}}{\mathrm{1}+{t}}\right){dt} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}{ln}\mid\frac{\mathrm{1}+{t}}{\mathrm{1}−{t}}\mid\:\Rightarrow\varphi\left({t}\right)=\frac{\mathrm{1}}{\mathrm{2}}{ln}\mid\frac{\mathrm{1}+{t}}{\mathrm{1}−{t}}\mid\:+{C} \\ $$$$\varphi\left(\mathrm{0}\right)=\mathrm{0}={C}\:\Rightarrow\varphi\left({t}\right)=\frac{\mathrm{1}}{\mathrm{2}}{ln}\mid\frac{\mathrm{1}+{t}}{\mathrm{1}−{t}}\mid\:\Rightarrow \\ $$$${S}=\frac{\mathrm{1}}{\mathrm{1}−{x}}\:+\frac{\mathrm{2}}{\:\sqrt{{x}}}\varphi\left(\sqrt{{x}}\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{1}−{x}}+\frac{\mathrm{1}}{\:\sqrt{{x}}}{ln}\mid\frac{\mathrm{1}+\sqrt{{x}}}{\mathrm{1}−\sqrt{{x}}}\mid \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com