Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 90589 by M±th+et£s last updated on 24/Apr/20

∫(1/(x+(√(x^2 +x+1))))dx

1x+x2+x+1dx

Commented by mathmax by abdo last updated on 24/Apr/20

I =∫  (dx/(x+(√(x^2 +x+1)))) =∫  (dx/(x+(√((x+(1/2))^2 +(3/4)))))  changement x+(1/2)=((√3)/2)sh(t) ⇒  I =∫   (1/(((√3)/2)sh(t)−(1/2)+((√3)/2)ch(t)))×((√3)/2)ch(t)dt  =(√3)∫   ((ch(t)dt)/((√3)sh(t)−1+(√3)ch(t))) =(√3)∫  (((e^t +e^(−t) )/2)/((√3)((e^t −e^(−t) )/2)−1+(√3)((e^t  +e^(−t) )/2)))dt  =(√3)∫   ((e^t  +e^(−t) )/((√3)(e^t −e^(−t) )+(√3)(e^t +e^(−t) )−2))dt  =_(e^t =u)   (√3)∫  ((u+u^(−1) )/((√3)(u−u^(−1) )+(√3)(u+u^(−1) )−2)) (du/u)  =(√3)∫  ((u^2 +1)/((√3)(u^3 −u)+(√3)(u^3 +u)−2u^2 ))du  =(√3)∫  ((u^2  +1)/(2(√3)u^3 −2u^2 )) du =((√3)/2)  ∫  ((u^2  +1)/(u^2 ((√3)u−1)))du let decompose  F(u) =((u^2  +1)/(u^2 ((√3)u −1))) ⇒F(u) =(a/u) +(b/u^2 ) +(c/((√3)u−1))   b =−1 and c =4 ⇒F(u) =(a/u)−(1/u^2 ) +(4/((√3)u−1))  lim_(u→+∞) uF(u) =(1/(√3)) =a+(4/(√3)) ⇒a =(3/(√3))=(√3) ⇒  F(u) =((√3)/u) −(1/u^2 ) +(4/((√3)u −1)) ⇒  ∫ F(u)du =(√3)ln∣u∣+(1/u) +(4/(√3))ln∣(√3)u−1∣ +C  =(√3)ln∣e^t ∣ + e^(−t)  +(4/(√3))ln∣(√3)e^t −1∣ +C  t =argsh(((2x+1)/(√3)))=ln(((2x+1)/(√3)) +(√(1+(((2x+1)/(√3)))^2 ))) ⇒  ∫F(u)du =(√3)(((2x+1)/(√3))+(√(1+(((2x+1)/(√3)))^2 )))+(1/(((2x+1)/(√3))+(√(1+(((2x+1)/(√3)))^2 ))))  +(4/(√3))ln∣(√3)(((2x+1)/(√3)) +(√(1+(((2x+1)/(√3)))^2 )))−1∣ +C  I =((√3)/2)∫ F(u)du

I=dxx+x2+x+1=dxx+(x+12)2+34changementx+12=32sh(t)I=132sh(t)12+32ch(t)×32ch(t)dt=3ch(t)dt3sh(t)1+3ch(t)=3et+et23etet21+3et+et2dt=3et+et3(etet)+3(et+et)2dt=et=u3u+u13(uu1)+3(u+u1)2duu=3u2+13(u3u)+3(u3+u)2u2du=3u2+123u32u2du=32u2+1u2(3u1)duletdecomposeF(u)=u2+1u2(3u1)F(u)=au+bu2+c3u1b=1andc=4F(u)=au1u2+43u1limu+uF(u)=13=a+43a=33=3F(u)=3u1u2+43u1F(u)du=3lnu+1u+43ln3u1+C=3lnet+et+43ln3et1+Ct=argsh(2x+13)=ln(2x+13+1+(2x+13)2)F(u)du=3(2x+13+1+(2x+13)2)+12x+13+1+(2x+13)2+43ln3(2x+13+1+(2x+13)2)1+CI=32F(u)du

Commented by M±th+et£s last updated on 25/Apr/20

god bless you

godblessyou

Commented by turbo msup by abdo last updated on 25/Apr/20

you are welcome sir.

youarewelcomesir.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com