All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 90589 by M±th+et£s last updated on 24/Apr/20
∫1x+x2+x+1dx
Commented by mathmax by abdo last updated on 24/Apr/20
I=∫dxx+x2+x+1=∫dxx+(x+12)2+34changementx+12=32sh(t)⇒I=∫132sh(t)−12+32ch(t)×32ch(t)dt=3∫ch(t)dt3sh(t)−1+3ch(t)=3∫et+e−t23et−e−t2−1+3et+e−t2dt=3∫et+e−t3(et−e−t)+3(et+e−t)−2dt=et=u3∫u+u−13(u−u−1)+3(u+u−1)−2duu=3∫u2+13(u3−u)+3(u3+u)−2u2du=3∫u2+123u3−2u2du=32∫u2+1u2(3u−1)duletdecomposeF(u)=u2+1u2(3u−1)⇒F(u)=au+bu2+c3u−1b=−1andc=4⇒F(u)=au−1u2+43u−1limu→+∞uF(u)=13=a+43⇒a=33=3⇒F(u)=3u−1u2+43u−1⇒∫F(u)du=3ln∣u∣+1u+43ln∣3u−1∣+C=3ln∣et∣+e−t+43ln∣3et−1∣+Ct=argsh(2x+13)=ln(2x+13+1+(2x+13)2)⇒∫F(u)du=3(2x+13+1+(2x+13)2)+12x+13+1+(2x+13)2+43ln∣3(2x+13+1+(2x+13)2)−1∣+CI=32∫F(u)du
Commented by M±th+et£s last updated on 25/Apr/20
godblessyou
Commented by turbo msup by abdo last updated on 25/Apr/20
youarewelcomesir.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com