Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 165651 by MathsFan last updated on 06/Feb/22

If the equation (2x−1)−p(x^2 +2)=0,  where p is constant, has imaginary  roots, deduce that 2p^2 +p−1≥0.

$${If}\:{the}\:{equation}\:\left(\mathrm{2}{x}−\mathrm{1}\right)−{p}\left({x}^{\mathrm{2}} +\mathrm{2}\right)=\mathrm{0}, \\ $$$${where}\:{p}\:{is}\:{constant},\:{has}\:{imaginary} \\ $$$${roots},\:{deduce}\:{that}\:\mathrm{2}{p}^{\mathrm{2}} +{p}−\mathrm{1}\geqslant\mathrm{0}. \\ $$

Commented by mr W last updated on 06/Feb/22

px^2 −2x+2p+1=0  x=((2±(√(2^2 −4p(2p+1))))/(2p))=((1±(√(1−p−2p^2 )))/p)  if 1−p−2p^2 ≥0 ⇒real roots  if 1−p−2p^2 <0 ⇒complex roots:      x=((1±i(√(2p^2 +p−1)))/p)      since (1/p)≠0, the equation can never      have imaginary roots!    therefore: question is wrong!  1) when 2p^2 +p−1=0 it has real roots.  2) when 2p^2 +p−1>0 it has comlex roots.

$${px}^{\mathrm{2}} −\mathrm{2}{x}+\mathrm{2}{p}+\mathrm{1}=\mathrm{0} \\ $$$${x}=\frac{\mathrm{2}\pm\sqrt{\mathrm{2}^{\mathrm{2}} −\mathrm{4}{p}\left(\mathrm{2}{p}+\mathrm{1}\right)}}{\mathrm{2}{p}}=\frac{\mathrm{1}\pm\sqrt{\mathrm{1}−{p}−\mathrm{2}{p}^{\mathrm{2}} }}{{p}} \\ $$$${if}\:\mathrm{1}−{p}−\mathrm{2}{p}^{\mathrm{2}} \geqslant\mathrm{0}\:\Rightarrow{real}\:{roots} \\ $$$${if}\:\mathrm{1}−{p}−\mathrm{2}{p}^{\mathrm{2}} <\mathrm{0}\:\Rightarrow{complex}\:{roots}: \\ $$$$\:\:\:\:{x}=\frac{\mathrm{1}\pm{i}\sqrt{\mathrm{2}{p}^{\mathrm{2}} +{p}−\mathrm{1}}}{{p}} \\ $$$$\:\:\:\:{since}\:\frac{\mathrm{1}}{{p}}\neq\mathrm{0},\:{the}\:{equation}\:{can}\:{never} \\ $$$$\:\:\:\:{have}\:{imaginary}\:{roots}! \\ $$$$ \\ $$$${therefore}:\:{question}\:{is}\:{wrong}! \\ $$$$\left.\mathrm{1}\right)\:{when}\:\mathrm{2}{p}^{\mathrm{2}} +{p}−\mathrm{1}=\mathrm{0}\:{it}\:{has}\:{real}\:{roots}. \\ $$$$\left.\mathrm{2}\right)\:{when}\:\mathrm{2}{p}^{\mathrm{2}} +{p}−\mathrm{1}>\mathrm{0}\:{it}\:{has}\:{comlex}\:{roots}. \\ $$

Commented by peter frank last updated on 06/Feb/22

thank you

$$\mathrm{thank}\:\mathrm{you} \\ $$

Commented by MathsFan last updated on 06/Feb/22

thanks

$${thanks} \\ $$

Commented by chrisbridge last updated on 06/Feb/22

i think you do not need (1/p) to be equal to 0 to have imaginary roots. You only need the discrimant to be = 0. From your work above 2p^2 +p−1>0 is true for the first equation to have imaginary roots

$${i}\:{think}\:{you}\:{do}\:{not}\:{need}\:\frac{\mathrm{1}}{{p}}\:{to}\:{be}\:{equal}\:{to}\:\mathrm{0}\:{to}\:{have}\:{imaginary}\:{roots}.\:{You}\:{only}\:{need}\:{the}\:{discrimant}\:{to}\:{be}\:=\:\mathrm{0}.\:{From}\:{your}\:{work}\:{above}\:\mathrm{2}{p}^{\mathrm{2}} +{p}−\mathrm{1}>\mathrm{0}\:{is}\:{true}\:{for}\:{the}\:{first}\:{equation}\:{to}\:{have}\:{imaginary}\:{roots} \\ $$

Commented by mr W last updated on 06/Feb/22

i don′t need, but the question needs!  the question requests imaginary roots.  bi is an imaginary number.  a+bi is a complex number, not an  imaginary number, if a≠0.  since (1/p) can′t be zero, so the equation  can never have imaginary roots!

$${i}\:{don}'{t}\:{need},\:{but}\:{the}\:{question}\:{needs}! \\ $$$${the}\:{question}\:{requests}\:{imaginary}\:{roots}. \\ $$$${bi}\:{is}\:{an}\:{imaginary}\:{number}. \\ $$$${a}+{bi}\:{is}\:{a}\:{complex}\:{number},\:{not}\:{an} \\ $$$${imaginary}\:{number},\:{if}\:{a}\neq\mathrm{0}. \\ $$$${since}\:\frac{\mathrm{1}}{{p}}\:{can}'{t}\:{be}\:{zero},\:{so}\:{the}\:{equation} \\ $$$${can}\:{never}\:{have}\:{imaginary}\:{roots}! \\ $$

Answered by chrisbridge last updated on 06/Feb/22

b^2 −4ac<0 for imaginary roots  2x − 1 −px^2  −2p = 0  px^2 −2x+(1+2p)=0  (−2)^2 −4p(1+2p)<0  4−4p−8p^2 <0  4−4p−8p^2 <0  dividing through by 4  1−p−2p^2 <0  on multiplying through by (−1)  −1+p+2p^2 >0  rearraging  2p^2 +p−1>0  required solution

$${b}^{\mathrm{2}} −\mathrm{4}{ac}<\mathrm{0}\:{for}\:{imaginary}\:{roots} \\ $$$$\mathrm{2}{x}\:−\:\mathrm{1}\:−{px}^{\mathrm{2}} \:−\mathrm{2}{p}\:=\:\mathrm{0} \\ $$$${px}^{\mathrm{2}} −\mathrm{2}{x}+\left(\mathrm{1}+\mathrm{2}{p}\right)=\mathrm{0} \\ $$$$\left(−\mathrm{2}\right)^{\mathrm{2}} −\mathrm{4}{p}\left(\mathrm{1}+\mathrm{2}{p}\right)<\mathrm{0} \\ $$$$\mathrm{4}−\mathrm{4}{p}−\mathrm{8}{p}^{\mathrm{2}} <\mathrm{0} \\ $$$$\mathrm{4}−\mathrm{4}{p}−\mathrm{8}{p}^{\mathrm{2}} <\mathrm{0} \\ $$$${dividing}\:{through}\:{by}\:\mathrm{4} \\ $$$$\mathrm{1}−{p}−\mathrm{2}{p}^{\mathrm{2}} <\mathrm{0} \\ $$$${on}\:{multiplying}\:{through}\:{by}\:\left(−\mathrm{1}\right) \\ $$$$−\mathrm{1}+{p}+\mathrm{2}{p}^{\mathrm{2}} >\mathrm{0} \\ $$$${rearraging} \\ $$$$\mathrm{2}{p}^{\mathrm{2}} +{p}−\mathrm{1}>\mathrm{0} \\ $$$${required}\:{solution} \\ $$$$ \\ $$$$ \\ $$

Commented by mr W last updated on 07/Feb/22

you seem to think  that imaginary   numbers and complex numbers are   the same thing.

$${you}\:{seem}\:{to}\:{think}\:\:{that}\:{imaginary}\: \\ $$$${numbers}\:{and}\:{complex}\:{numbers}\:{are}\: \\ $$$${the}\:{same}\:{thing}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com