Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 165724 by mathocean1 last updated on 06/Feb/22

(U_n )_(n∈N^∗ )  : U_n =Σ_(k=1) ^n (1/k)   Show that ∀ n∈N^(∗ ) , U_(2n) −U_n ≥(1/2)  . Deduct that lim_(n→+∞)  U_n =+∞

$$\left({U}_{{n}} \right)_{{n}\in\mathbb{N}^{\ast} } \::\:{U}_{{n}} =\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{\mathrm{1}}{{k}}\: \\ $$$${Show}\:{that}\:\forall\:{n}\in\mathbb{N}^{\ast\:} ,\:{U}_{\mathrm{2}{n}} −{U}_{{n}} \geqslant\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$.\:{Deduct}\:{that}\:\underset{{n}\rightarrow+\infty} {{lim}}\:{U}_{{n}} =+\infty \\ $$

Answered by alephzero last updated on 07/Feb/22

2)  lim_(n→+∞) U_n  = Σ_(k=1) ^∞ (1/k)  Test for converge/diverge  ∫_1 ^∞ (dx/x) = +∞ ⇒ Σ_(k=1) ^∞ (1/k) diverges  ⇒ lim_(n→+∞) U_n  = +∞

$$\left.\mathrm{2}\right) \\ $$$$\underset{{n}\rightarrow+\infty} {\mathrm{lim}}{U}_{{n}} \:=\:\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{k}} \\ $$$$\mathrm{Test}\:\mathrm{for}\:\mathrm{converge}/\mathrm{diverge} \\ $$$$\underset{\mathrm{1}} {\overset{\infty} {\int}}\frac{{dx}}{{x}}\:=\:+\infty\:\Rightarrow\:\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{k}}\:\mathrm{diverges} \\ $$$$\Rightarrow\:\underset{{n}\rightarrow+\infty} {\mathrm{lim}}{U}_{{n}} \:=\:+\infty \\ $$

Answered by Mathspace last updated on 08/Feb/22

we have u_(2n) −u_n =Σ_(k=1) ^(2n)  (1/k)  −Σ_(k=1) ^n  (1/k)=Σ_(k=n+1) ^(2n)  (1/k)  or   n+1≤k≤2n ⇒(1/(2n))≤(1/k)≤(1/(n+1))  ⇒Σ_(k=n+1) ^(2n) (1/(2n))≤Σ_(k=n+1) ^(2n)  (1/k) ⇒  n×(1/(2n))≤u_(n+1) −u_n  ⇒u_(n+1) −u_n ≥(1/2)  if lim u_n =l  ∈R ⇒lim u_(2n) =l (suite   extrete de u_n ) ⇒lim (u_(2n) −u_n )=0  we get  o≥(1/2) impossible so limu_n   is infinite  another way  u_n =H_n   and H_n ∼ln(n)+γ +o((1/n)) ⇒  lim H_n =limln(n)=+∞

$${we}\:{have}\:{u}_{\mathrm{2}{n}} −{u}_{{n}} =\sum_{{k}=\mathrm{1}} ^{\mathrm{2}{n}} \:\frac{\mathrm{1}}{{k}} \\ $$$$−\sum_{{k}=\mathrm{1}} ^{{n}} \:\frac{\mathrm{1}}{{k}}=\sum_{{k}={n}+\mathrm{1}} ^{\mathrm{2}{n}} \:\frac{\mathrm{1}}{{k}} \\ $$$${or}\:\:\:{n}+\mathrm{1}\leqslant{k}\leqslant\mathrm{2}{n}\:\Rightarrow\frac{\mathrm{1}}{\mathrm{2}{n}}\leqslant\frac{\mathrm{1}}{{k}}\leqslant\frac{\mathrm{1}}{{n}+\mathrm{1}} \\ $$$$\Rightarrow\sum_{{k}={n}+\mathrm{1}} ^{\mathrm{2}{n}} \frac{\mathrm{1}}{\mathrm{2}{n}}\leqslant\sum_{{k}={n}+\mathrm{1}} ^{\mathrm{2}{n}} \:\frac{\mathrm{1}}{{k}}\:\Rightarrow \\ $$$${n}×\frac{\mathrm{1}}{\mathrm{2}{n}}\leqslant{u}_{{n}+\mathrm{1}} −{u}_{{n}} \:\Rightarrow{u}_{{n}+\mathrm{1}} −{u}_{{n}} \geqslant\frac{\mathrm{1}}{\mathrm{2}} \\ $$$${if}\:{lim}\:{u}_{{n}} ={l}\:\:\in{R}\:\Rightarrow{lim}\:{u}_{\mathrm{2}{n}} ={l}\:\left({suite}\:\right. \\ $$$$\left.{extrete}\:{de}\:{u}_{{n}} \right)\:\Rightarrow{lim}\:\left({u}_{\mathrm{2}{n}} −{u}_{{n}} \right)=\mathrm{0} \\ $$$${we}\:{get}\:\:{o}\geqslant\frac{\mathrm{1}}{\mathrm{2}}\:{impossible}\:{so}\:{limu}_{{n}} \\ $$$${is}\:{infinite} \\ $$$${another}\:{way} \\ $$$${u}_{{n}} ={H}_{{n}} \:\:{and}\:{H}_{{n}} \sim{ln}\left({n}\right)+\gamma\:+{o}\left(\frac{\mathrm{1}}{{n}}\right)\:\Rightarrow \\ $$$${lim}\:{H}_{{n}} ={limln}\left({n}\right)=+\infty \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com