Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 165791 by aurpeyz last updated on 08/Feb/22

Answered by ghchoi0707 last updated on 08/Feb/22

m=Mass of roller coaster (any unit)  g=Acceleration by Gravity≒9.8m/s^2   z=Position of roller coaster (m)  v_i /v_f =Initial/Final velocity of roller coaster (m/s)  E=Mechanical Energy  K=Kinetic Energy  U=Potential Energy (By Gravity)  We have to find v_f  .  Let [Initial U]=0J.  Then ΔU= mgΔz=mg×(−20)=−20mg  (∵ U is path independent.  In other words, you just have to check only initial and final condition.)  as ΔE=0, ΔK=(m/2)×(v_f ^(  2) −v_i ^(  2) )=−ΔU=20mg.  as v_i =0, v_f =(√(40g))≒19.8 (m/s).

$${m}=\mathrm{Mass}\:\mathrm{of}\:\mathrm{roller}\:\mathrm{coaster}\:\left(\mathrm{any}\:\mathrm{unit}\right) \\ $$$${g}=\mathrm{Acceleration}\:\mathrm{by}\:\mathrm{Gravity}\fallingdotseq\mathrm{9}.\mathrm{8m}/\mathrm{s}^{\mathrm{2}} \\ $$$${z}=\mathrm{Position}\:\mathrm{of}\:\mathrm{roller}\:\mathrm{coaster}\:\left(\mathrm{m}\right) \\ $$$${v}_{{i}} /{v}_{{f}} =\mathrm{Initial}/\mathrm{Final}\:\mathrm{velocity}\:\mathrm{of}\:\mathrm{roller}\:\mathrm{coaster}\:\left(\mathrm{m}/\mathrm{s}\right) \\ $$$${E}=\mathrm{Mechanical}\:\mathrm{Energy} \\ $$$${K}=\mathrm{Kinetic}\:\mathrm{Energy} \\ $$$${U}=\mathrm{Potential}\:\mathrm{Energy}\:\left(\mathrm{By}\:\mathrm{Gravity}\right) \\ $$$$\mathrm{We}\:\mathrm{have}\:\mathrm{to}\:\mathrm{find}\:{v}_{{f}} \:. \\ $$$$\mathrm{Let}\:\left[\mathrm{Initial}\:{U}\right]=\mathrm{0J}. \\ $$$$\mathrm{Then}\:\Delta{U}=\:{mg}\Delta{z}={mg}×\left(−\mathrm{20}\right)=−\mathrm{20}{mg} \\ $$$$\left(\because\:{U}\:\mathrm{is}\:\mathrm{path}\:\mathrm{independent}.\right. \\ $$$$\left.\mathrm{In}\:\mathrm{other}\:\mathrm{words},\:\mathrm{you}\:\mathrm{just}\:\mathrm{have}\:\mathrm{to}\:\mathrm{check}\:\mathrm{only}\:\mathrm{initial}\:\mathrm{and}\:\mathrm{final}\:\mathrm{condition}.\right) \\ $$$$\mathrm{as}\:\Delta{E}=\mathrm{0},\:\Delta{K}=\frac{{m}}{\mathrm{2}}×\left({v}_{{f}} ^{\:\:\mathrm{2}} −{v}_{{i}} ^{\:\:\mathrm{2}} \right)=−\Delta{U}=\mathrm{20}{mg}. \\ $$$$\mathrm{as}\:{v}_{{i}} =\mathrm{0},\:{v}_{{f}} =\sqrt{\mathrm{40}{g}}\fallingdotseq\mathrm{19}.\mathrm{8}\:\left(\mathrm{m}/\mathrm{s}\right). \\ $$

Answered by MJS_new last updated on 09/Feb/22

ignoring friction and air resistance it′s equal  to a free fall of 20m:  s=((gt^2 )/2) ⇒ t=(√((2s)/g))  v=gt=(√(2gs))=(√(2×9.81×20))≈19.8(m/s)

$$\mathrm{ignoring}\:\mathrm{friction}\:\mathrm{and}\:\mathrm{air}\:\mathrm{resistance}\:\mathrm{it}'\mathrm{s}\:\mathrm{equal} \\ $$$$\mathrm{to}\:\mathrm{a}\:\mathrm{free}\:\mathrm{fall}\:\mathrm{of}\:\mathrm{20m}: \\ $$$${s}=\frac{{gt}^{\mathrm{2}} }{\mathrm{2}}\:\Rightarrow\:{t}=\sqrt{\frac{\mathrm{2}{s}}{{g}}} \\ $$$${v}={gt}=\sqrt{\mathrm{2}{gs}}=\sqrt{\mathrm{2}×\mathrm{9}.\mathrm{81}×\mathrm{20}}\approx\mathrm{19}.\mathrm{8}\frac{\mathrm{m}}{\mathrm{s}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com