Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 16592 by chux last updated on 24/Jun/17

please what does the question mean  by the overlapping portion of A   and B.

$$\mathrm{please}\:\mathrm{what}\:\mathrm{does}\:\mathrm{the}\:\mathrm{question}\:\mathrm{mean} \\ $$$$\mathrm{by}\:\mathrm{the}\:\mathrm{overlapping}\:\mathrm{portion}\:\mathrm{of}\:\mathrm{A}\: \\ $$$$\mathrm{and}\:\mathrm{B}. \\ $$

Commented by chux last updated on 24/Jun/17

Answered by ajfour last updated on 24/Jun/17

Commented by ajfour last updated on 24/Jun/17

 Overapping area is the area  common to circles A and B.  Let  (h,0) be the center of circle B.   sin (x°/2)=(h/2)  ⇒  h=2sin (x°/2)  eqn of circle A:    (x+h)^2 +y^2 =1  eqn of circle B:    (x−h)^2 +y^2 =1  let circle A intersect x axis at (a,0).  then   a+h =1  or    a=1−h  ...(i)   overlapping area is two times the  area between circle A and y-axis.   upper portion of circle A has eqn.   y= (√(1−(x+h)^2 ))   let required area is S.   S=4∫_0 ^(  a) (√(1−(x+h)^2 )) dx    = 4{((x+h)/2)(√(1−(x+h)^2 )) +                                     (1/2)sin^(−1) (x+h) }∣_0 ^a      = 4(((a+h)/2))(√(1−(a+h)^2 ))−((4h)/2)(√(1−h^2 ))                 +(4/2)sin^(−1) (a+h)−(4/2)sin^(−1) h   but a+h=1  and  h=2sin (x°/2)   S = 0−2h(√(1−h^2 ))+π−2sin^(−1) h      = π−2h(√(1−h^2 ))−2sin^(−1) h .                   where h= 2sin (x°/2) .

$$\:\mathrm{Overapping}\:\mathrm{area}\:\mathrm{is}\:\mathrm{the}\:\mathrm{area} \\ $$$$\mathrm{common}\:\mathrm{to}\:\mathrm{circles}\:\mathrm{A}\:\mathrm{and}\:\mathrm{B}. \\ $$$$\mathrm{Let}\:\:\left(\mathrm{h},\mathrm{0}\right)\:\mathrm{be}\:\mathrm{the}\:\mathrm{center}\:\mathrm{of}\:\mathrm{circle}\:\mathrm{B}. \\ $$$$\:\mathrm{sin}\:\left(\mathrm{x}°/\mathrm{2}\right)=\frac{\mathrm{h}}{\mathrm{2}}\:\:\Rightarrow\:\:\mathrm{h}=\mathrm{2sin}\:\left(\mathrm{x}°/\mathrm{2}\right) \\ $$$$\mathrm{eqn}\:\mathrm{of}\:\mathrm{circle}\:\mathrm{A}: \\ $$$$\:\:\left(\mathrm{x}+\mathrm{h}\right)^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} =\mathrm{1} \\ $$$$\mathrm{eqn}\:\mathrm{of}\:\mathrm{circle}\:\mathrm{B}: \\ $$$$\:\:\left(\mathrm{x}−\mathrm{h}\right)^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} =\mathrm{1} \\ $$$$\mathrm{let}\:\mathrm{circle}\:\mathrm{A}\:\mathrm{intersect}\:\mathrm{x}\:\mathrm{axis}\:\mathrm{at}\:\left(\boldsymbol{\mathrm{a}},\mathrm{0}\right). \\ $$$$\mathrm{then}\:\:\:\mathrm{a}+\mathrm{h}\:=\mathrm{1}\:\:\mathrm{or}\:\:\:\:\mathrm{a}=\mathrm{1}−\mathrm{h}\:\:...\left(\mathrm{i}\right) \\ $$$$\:\mathrm{overlapping}\:\mathrm{area}\:\mathrm{is}\:\mathrm{two}\:\mathrm{times}\:\mathrm{the} \\ $$$$\mathrm{area}\:\mathrm{between}\:\mathrm{circle}\:\mathrm{A}\:\mathrm{and}\:\mathrm{y}-\mathrm{axis}. \\ $$$$\:\mathrm{upper}\:\mathrm{portion}\:\mathrm{of}\:\mathrm{circle}\:\mathrm{A}\:\mathrm{has}\:\mathrm{eqn}. \\ $$$$\:\mathrm{y}=\:\sqrt{\mathrm{1}−\left(\mathrm{x}+\mathrm{h}\right)^{\mathrm{2}} }\: \\ $$$$\mathrm{let}\:\mathrm{required}\:\mathrm{area}\:\mathrm{is}\:\mathrm{S}. \\ $$$$\:\mathrm{S}=\mathrm{4}\int_{\mathrm{0}} ^{\:\:\mathrm{a}} \sqrt{\mathrm{1}−\left(\mathrm{x}+\mathrm{h}\right)^{\mathrm{2}} }\:\mathrm{dx} \\ $$$$\:\:=\:\mathrm{4}\left\{\frac{\mathrm{x}+\mathrm{h}}{\mathrm{2}}\sqrt{\mathrm{1}−\left(\mathrm{x}+\mathrm{h}\right)^{\mathrm{2}} }\:+\right. \\ $$$$\left.\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{\mathrm{1}}{\mathrm{2}}\mathrm{sin}^{−\mathrm{1}} \left(\mathrm{x}+\mathrm{h}\right)\:\right\}\mid_{\mathrm{0}} ^{\mathrm{a}} \\ $$$$\:\:\:=\:\mathrm{4}\left(\frac{\mathrm{a}+\mathrm{h}}{\mathrm{2}}\right)\sqrt{\mathrm{1}−\left(\mathrm{a}+\mathrm{h}\right)^{\mathrm{2}} }−\frac{\mathrm{4h}}{\mathrm{2}}\sqrt{\mathrm{1}−\mathrm{h}^{\mathrm{2}} } \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:+\frac{\mathrm{4}}{\mathrm{2}}\mathrm{sin}^{−\mathrm{1}} \left(\mathrm{a}+\mathrm{h}\right)−\frac{\mathrm{4}}{\mathrm{2}}\mathrm{sin}^{−\mathrm{1}} \mathrm{h} \\ $$$$\:\mathrm{but}\:\mathrm{a}+\mathrm{h}=\mathrm{1}\:\:\mathrm{and}\:\:\mathrm{h}=\mathrm{2sin}\:\left(\mathrm{x}°/\mathrm{2}\right) \\ $$$$\:\mathrm{S}\:=\:\mathrm{0}−\mathrm{2h}\sqrt{\mathrm{1}−\mathrm{h}^{\mathrm{2}} }+\pi−\mathrm{2sin}^{−\mathrm{1}} \mathrm{h} \\ $$$$\:\:\:\:=\:\pi−\mathrm{2h}\sqrt{\mathrm{1}−\mathrm{h}^{\mathrm{2}} }−\mathrm{2sin}^{−\mathrm{1}} \mathrm{h}\:. \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{where}\:\mathrm{h}=\:\mathrm{2sin}\:\left(\mathrm{x}°/\mathrm{2}\right)\:. \\ $$

Commented by chux last updated on 24/Jun/17

thanks alot sir.

$$\mathrm{thanks}\:\mathrm{alot}\:\mathrm{sir}. \\ $$

Commented by chux last updated on 24/Jun/17

please is it possible to get the  value of x.

$$\mathrm{please}\:\mathrm{is}\:\mathrm{it}\:\mathrm{possible}\:\mathrm{to}\:\mathrm{get}\:\mathrm{the} \\ $$$$\mathrm{value}\:\mathrm{of}\:\mathrm{x}. \\ $$

Commented by ajfour last updated on 24/Jun/17

that is to be chosen, in question  it said 0°≤x≤60°  , had it said    x=30° or any other value, area  of overlap shall be obtained then  from the derived formula, or if the  area of overlap be given the angle  x can be calculated; they are  interdependent.

$$\mathrm{that}\:\mathrm{is}\:\mathrm{to}\:\mathrm{be}\:\mathrm{chosen},\:\mathrm{in}\:\mathrm{question} \\ $$$$\mathrm{it}\:\mathrm{said}\:\mathrm{0}°\leqslant\mathrm{x}\leqslant\mathrm{60}°\:\:,\:\mathrm{had}\:\mathrm{it}\:\mathrm{said}\: \\ $$$$\:\mathrm{x}=\mathrm{30}°\:\mathrm{or}\:\mathrm{any}\:\mathrm{other}\:\mathrm{value},\:\mathrm{area} \\ $$$$\mathrm{of}\:\mathrm{overlap}\:\mathrm{shall}\:\mathrm{be}\:\mathrm{obtained}\:\mathrm{then} \\ $$$$\mathrm{from}\:\mathrm{the}\:\mathrm{derived}\:\mathrm{formula},\:\mathrm{or}\:\mathrm{if}\:\mathrm{the} \\ $$$$\mathrm{area}\:\mathrm{of}\:\mathrm{overlap}\:\mathrm{be}\:\mathrm{given}\:\mathrm{the}\:\mathrm{angle} \\ $$$$\mathrm{x}\:\mathrm{can}\:\mathrm{be}\:\mathrm{calculated};\:\mathrm{they}\:\mathrm{are} \\ $$$$\mathrm{interdependent}. \\ $$

Commented by chux last updated on 24/Jun/17

ok sir

$$\mathrm{ok}\:\mathrm{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com