Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 165955 by cortano1 last updated on 10/Feb/22

    C = ∫_0 ^( π) (dx/(2+cos 2x)) =?

C=0πdx2+cos2x=?

Answered by MJS_new last updated on 10/Feb/22

∫_0 ^π (dx/(2+cos 2x))=2∫_0 ^(π/2) (dx/(2+cos 2x))  ∫(dx/(2+cos 2x))=       [t=tan x → dx=(dt/(t^2 +1))]  =∫(dt/(t^2 +3))=((√3)/3)arctan (((√3)t)/3) =((√3)/3)arctan (((√3)tan x)/3) +C  ⇒  ∫_0 ^π (dx/(2+cos 2x))=(((√3)π)/3)

π0dx2+cos2x=2π/20dx2+cos2xdx2+cos2x=[t=tanxdx=dtt2+1]=dtt2+3=33arctan3t3=33arctan3tanx3+Cπ0dx2+cos2x=3π3

Terms of Service

Privacy Policy

Contact: info@tinkutara.com