Question and Answers Forum

All Questions      Topic List

Mensuration Questions

Previous in All Question      Next in All Question      

Previous in Mensuration      Next in Mensuration      

Question Number 165965 by ajfour last updated on 10/Feb/22

Answered by mr W last updated on 10/Feb/22

Commented by mr W last updated on 12/Feb/22

A=A_1 +A_2   A_1  is maximum when p=q=(x/( (√2))).  A_(1,max) =(x^2 /4)  A_2  is maximum when the quadrilateral  is cyclic.  A_(2,max) =(√((s−a)(s−b)(s−c)(s−x)))  with s=((a+b+c+x)/2).  R=(1/4)(√(((ab+cd)(ac+bd)(ad+bc))/((s−a)(s−b)(s−c)(s−d))))  with d=x.  A=(x^2 /4)+(√((s−a)(s−b)(s−c)(s−x)))  such that A is maximum,  (dA/dx)=(x/2)+((√((s−a)(s−b)(s−c)(s−x)))/4)((1/(s−a))+(1/(s−b))+(1/(s−c))−(1/(s−x)))=0  ⇒2x+(√((s−a)(s−b)(s−c)(s−x)))((1/(s−a))+(1/(s−b))+(1/(s−c))−(1/(s−x)))=0  .... exact solution for x seems  impossible...    example: a=1, b=3, c=2  ⇒x≈5.4969, A_(max) ≈11.062

$${A}={A}_{\mathrm{1}} +{A}_{\mathrm{2}} \\ $$$${A}_{\mathrm{1}} \:{is}\:{maximum}\:{when}\:{p}={q}=\frac{{x}}{\:\sqrt{\mathrm{2}}}. \\ $$$${A}_{\mathrm{1},{max}} =\frac{{x}^{\mathrm{2}} }{\mathrm{4}} \\ $$$${A}_{\mathrm{2}} \:{is}\:{maximum}\:{when}\:{the}\:{quadrilateral} \\ $$$${is}\:{cyclic}. \\ $$$${A}_{\mathrm{2},{max}} =\sqrt{\left({s}−{a}\right)\left({s}−{b}\right)\left({s}−{c}\right)\left({s}−{x}\right)} \\ $$$${with}\:{s}=\frac{{a}+{b}+{c}+{x}}{\mathrm{2}}. \\ $$$${R}=\frac{\mathrm{1}}{\mathrm{4}}\sqrt{\frac{\left({ab}+{cd}\right)\left({ac}+{bd}\right)\left({ad}+{bc}\right)}{\left({s}−{a}\right)\left({s}−{b}\right)\left({s}−{c}\right)\left({s}−{d}\right)}} \\ $$$${with}\:{d}={x}. \\ $$$${A}=\frac{{x}^{\mathrm{2}} }{\mathrm{4}}+\sqrt{\left({s}−{a}\right)\left({s}−{b}\right)\left({s}−{c}\right)\left({s}−{x}\right)} \\ $$$${such}\:{that}\:{A}\:{is}\:{maximum}, \\ $$$$\frac{{dA}}{{dx}}=\frac{{x}}{\mathrm{2}}+\frac{\sqrt{\left({s}−{a}\right)\left({s}−{b}\right)\left({s}−{c}\right)\left({s}−{x}\right)}}{\mathrm{4}}\left(\frac{\mathrm{1}}{{s}−{a}}+\frac{\mathrm{1}}{{s}−{b}}+\frac{\mathrm{1}}{{s}−{c}}−\frac{\mathrm{1}}{{s}−{x}}\right)=\mathrm{0} \\ $$$$\Rightarrow\mathrm{2}{x}+\sqrt{\left({s}−{a}\right)\left({s}−{b}\right)\left({s}−{c}\right)\left({s}−{x}\right)}\left(\frac{\mathrm{1}}{{s}−{a}}+\frac{\mathrm{1}}{{s}−{b}}+\frac{\mathrm{1}}{{s}−{c}}−\frac{\mathrm{1}}{{s}−{x}}\right)=\mathrm{0} \\ $$$$....\:{exact}\:{solution}\:{for}\:{x}\:{seems} \\ $$$${impossible}... \\ $$$$ \\ $$$${example}:\:{a}=\mathrm{1},\:{b}=\mathrm{3},\:{c}=\mathrm{2} \\ $$$$\Rightarrow{x}\approx\mathrm{5}.\mathrm{4969},\:{A}_{{max}} \approx\mathrm{11}.\mathrm{062} \\ $$

Commented by mr W last updated on 11/Feb/22

Commented by mr W last updated on 11/Feb/22

Commented by mr W last updated on 11/Feb/22

Commented by mr W last updated on 11/Feb/22

Commented by Tawa11 last updated on 11/Feb/22

Great sir

$$\mathrm{Great}\:\mathrm{sir} \\ $$

Commented by aleks041103 last updated on 12/Feb/22

The approach you take up is the same  to what I had in mind, but still I have  an objection.  You maximized A_1  for a given x, and  then you seem to imply that if A_2  is max  then A=A_1 +A_2  will be max, which  isn′t nessecairly true.  Basically, you say that:  A(x)=A_(1 max) (x)+A_(2 max) (x)=(x^2 /4)+A_(2 max) (x)  is max when A_(2 max ) (x) is max.  This is obviously not true, since:  A is max⇒A′=0  but  A′=(x/2)+A_(2max) ′=0⇎A_(2max) ′=0

$${The}\:{approach}\:{you}\:{take}\:{up}\:{is}\:{the}\:{same} \\ $$$${to}\:{what}\:{I}\:{had}\:{in}\:{mind},\:{but}\:{still}\:{I}\:{have} \\ $$$${an}\:{objection}. \\ $$$${You}\:{maximized}\:{A}_{\mathrm{1}} \:{for}\:{a}\:{given}\:{x},\:{and} \\ $$$${then}\:{you}\:{seem}\:{to}\:{imply}\:{that}\:{if}\:{A}_{\mathrm{2}} \:{is}\:{max} \\ $$$${then}\:{A}={A}_{\mathrm{1}} +{A}_{\mathrm{2}} \:{will}\:{be}\:{max},\:{which} \\ $$$${isn}'{t}\:{nessecairly}\:{true}. \\ $$$${Basically},\:{you}\:{say}\:{that}: \\ $$$${A}\left({x}\right)={A}_{\mathrm{1}\:{max}} \left({x}\right)+{A}_{\mathrm{2}\:{max}} \left({x}\right)=\frac{{x}^{\mathrm{2}} }{\mathrm{4}}+{A}_{\mathrm{2}\:{max}} \left({x}\right) \\ $$$${is}\:{max}\:{when}\:{A}_{\mathrm{2}\:{max}\:} \left({x}\right)\:{is}\:{max}. \\ $$$${This}\:{is}\:{obviously}\:{not}\:{true},\:{since}: \\ $$$${A}\:{is}\:{max}\Rightarrow{A}'=\mathrm{0} \\ $$$${but} \\ $$$${A}'=\frac{{x}}{\mathrm{2}}+{A}_{\mathrm{2}{max}} '=\mathrm{0}\nLeftrightarrow{A}_{\mathrm{2}{max}} '=\mathrm{0} \\ $$

Commented by mr W last updated on 12/Feb/22

i didn′t say that A is maximum if A_2    is maximum. you can see that i  set A=(x^2 /4)+(√((s−a)(s−b)(s−c)(s−x)))  and request (dA/dx)=0.  when we have four sides a,b,c,x, it′s  clear that A_1  should be an isosceles   right triangle with area (x^2 /4) and the  quatrilateral should be a cyclic one  with area (√((s−a)(s−b)(s−c)(s−x))).  the sum of both should be maximum.

$${i}\:{didn}'{t}\:{say}\:{that}\:{A}\:{is}\:{maximum}\:{if}\:{A}_{\mathrm{2}} \: \\ $$$${is}\:{maximum}.\:{you}\:{can}\:{see}\:{that}\:{i} \\ $$$${set}\:{A}=\frac{{x}^{\mathrm{2}} }{\mathrm{4}}+\sqrt{\left({s}−{a}\right)\left({s}−{b}\right)\left({s}−{c}\right)\left({s}−{x}\right)} \\ $$$${and}\:{request}\:\frac{{dA}}{{dx}}=\mathrm{0}. \\ $$$${when}\:{we}\:{have}\:{four}\:{sides}\:{a},{b},{c},{x},\:{it}'{s} \\ $$$${clear}\:{that}\:{A}_{\mathrm{1}} \:{should}\:{be}\:{an}\:{isosceles}\: \\ $$$${right}\:{triangle}\:{with}\:{area}\:\frac{{x}^{\mathrm{2}} }{\mathrm{4}}\:{and}\:{the} \\ $$$${quatrilateral}\:{should}\:{be}\:{a}\:{cyclic}\:{one} \\ $$$${with}\:{area}\:\sqrt{\left({s}−{a}\right)\left({s}−{b}\right)\left({s}−{c}\right)\left({s}−{x}\right)}. \\ $$$${the}\:{sum}\:{of}\:{both}\:{should}\:{be}\:{maximum}. \\ $$

Commented by mr W last updated on 12/Feb/22

the solution could be much easier if  we just request that A_2  should be  maximum, see Q166007.

$${the}\:{solution}\:{could}\:{be}\:{much}\:{easier}\:{if} \\ $$$${we}\:{just}\:{request}\:{that}\:{A}_{\mathrm{2}} \:{should}\:{be} \\ $$$${maximum},\:{see}\:{Q}\mathrm{166007}. \\ $$

Commented by aleks041103 last updated on 12/Feb/22

Yes, you′re right! I′m sorry, I  misunderstood your solution!  It′s fine! Sorry again!

$${Yes},\:{you}'{re}\:{right}!\:{I}'{m}\:{sorry},\:{I} \\ $$$${misunderstood}\:{your}\:{solution}! \\ $$$${It}'{s}\:{fine}!\:{Sorry}\:{again}! \\ $$

Commented by mr W last updated on 12/Feb/22

it′s alright sir. i appreciate such  substantial feedback very much.  thanks alot!

$${it}'{s}\:{alright}\:{sir}.\:{i}\:{appreciate}\:{such} \\ $$$${substantial}\:{feedback}\:{very}\:{much}. \\ $$$${thanks}\:{alot}! \\ $$

Commented by mr W last updated on 12/Feb/22

Commented by mr W last updated on 12/Feb/22

this is the maximal possible area.  but i can not exactly calculate R.  i get a final equation with R^6 , thus  unsolvable.

$${this}\:{is}\:{the}\:{maximal}\:{possible}\:{area}. \\ $$$${but}\:{i}\:{can}\:{not}\:{exactly}\:{calculate}\:{R}. \\ $$$${i}\:{get}\:{a}\:{final}\:{equation}\:{with}\:{R}^{\mathrm{6}} ,\:{thus} \\ $$$${unsolvable}. \\ $$

Commented by mr W last updated on 12/Feb/22

R=(√(((ab+cx)(ac+bx)(bc+ax))/((−a+b+c+x)(a−b+c+x)(a+b−c+x)(a+b+c−x))))  R=(x/( (√2)))  (x^2 /( 2))=(((ab+cx)(ac+bx)(bc+ax))/((−a+b+c+x)(a−b+c+x)(a+b−c+x)(a+b+c−x)))  ⇒x^6 −2(a^2 +b^2 +c^2 )x^4 −6abcx^3 +(a^4 +b^4 +c^4 )x^2 +2abc(a^2 +b^2 +c^2 )x+2a^2 b^2 c^2 =0  exact solution not possible...

$${R}=\sqrt{\frac{\left({ab}+{cx}\right)\left({ac}+{bx}\right)\left({bc}+{ax}\right)}{\left(−{a}+{b}+{c}+{x}\right)\left({a}−{b}+{c}+{x}\right)\left({a}+{b}−{c}+{x}\right)\left({a}+{b}+{c}−{x}\right)}} \\ $$$${R}=\frac{{x}}{\:\sqrt{\mathrm{2}}} \\ $$$$\frac{{x}^{\mathrm{2}} }{\:\mathrm{2}}=\frac{\left({ab}+{cx}\right)\left({ac}+{bx}\right)\left({bc}+{ax}\right)}{\left(−{a}+{b}+{c}+{x}\right)\left({a}−{b}+{c}+{x}\right)\left({a}+{b}−{c}+{x}\right)\left({a}+{b}+{c}−{x}\right)} \\ $$$$\Rightarrow{x}^{\mathrm{6}} −\mathrm{2}\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} \right){x}^{\mathrm{4}} −\mathrm{6}{abcx}^{\mathrm{3}} +\left({a}^{\mathrm{4}} +{b}^{\mathrm{4}} +{c}^{\mathrm{4}} \right){x}^{\mathrm{2}} +\mathrm{2}{abc}\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} \right){x}+\mathrm{2}{a}^{\mathrm{2}} {b}^{\mathrm{2}} {c}^{\mathrm{2}} =\mathrm{0} \\ $$$${exact}\:{solution}\:{not}\:{possible}... \\ $$

Answered by ajfour last updated on 11/Feb/22

Terms of Service

Privacy Policy

Contact: info@tinkutara.com