Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 166291 by SANOGO last updated on 17/Feb/22

calculer la somme  Σ_(n=1) ^(+oo)  (1/(n(n+2)))x^n

calculerlasomme+oon=11n(n+2)xn

Answered by TheSupreme last updated on 18/Feb/22

Σ=a_n x^n   ρ=lim_n  (a_n /a_(n+1) )=1  ∣x∣≤1    Σ=(1/2)Σ_n ((1/n)−(1/(n+2)))x^n   Σ=(1/2)Σ(x^n /n)−(1/2)Σ(x^n /(n+2))  Σ(x^n /n)=Σ∫x^(n−1) dx=∫Σx^(n−1) =∫(1/(1−x))dx=−ln∣1−x∣  Σ(x^n /(n+2))=(1/x^2 )Σ(x^(n+2) /(n+2))=Σ∫x^(n+1) dx=∫Σx^(n+1) dx=∫((1/(1−x))−1−x)dx  −ln∣1−x∣−x−(x^2 /2)  Σ(x^n /(n(n+2)))=(1/2)((x^2 /2)+x)

Σ=anxnρ=limnanan+1=1x∣⩽1Σ=12n(1n1n+2)xnΣ=12Σxnn12Σxnn+2Σxnn=Σxn1dx=Σxn1=11xdx=ln1xΣxnn+2=1x2Σxn+2n+2=Σxn+1dx=Σxn+1dx=(11x1x)dxln1xxx22Σxnn(n+2)=12(x22+x)

Commented by SANOGO last updated on 18/Feb/22

merci bien

mercibien

Terms of Service

Privacy Policy

Contact: info@tinkutara.com