Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 166372 by mathlove last updated on 19/Feb/22

Answered by MJS_new last updated on 19/Feb/22

Yes I can.

YesIcan.

Commented by mr W last updated on 19/Feb/22

yes, we can!

yes,wecan!

Commented by peter frank last updated on 19/Feb/22

hahahhahah

hahahhahah

Answered by MathsFan last updated on 19/Feb/22

yes i can!

yesican!

Answered by Rasheed.Sindhi last updated on 19/Feb/22

b^2 +b+1=0⇒(b−1)(b^2 +b+1)=0  ⇒b^3 −1=0⇒b=1,ω,ω^2   ∵b=1 is the root of b−1=0  ∴b^2 +b+1⇒b=ω,ω^2   b=ω: b^(2022) +(1/b^(2022) )=ω^(2022) +(1/ω^(2022) )           =(ω^3 )^(674) +(1/((ω^3 )^(674) ))=1^(674) +(1/1^(674) )=2  b=ω^2 :  b^(2022) +(1/b^(2022) )=(ω^2 )^(2022) +(1/((ω^2 )^(2022) ))  =(ω^3 )^(2×674) +(1/((ω^3 )^(2×674) ))=1^(2×674) +(1/1^(2×674) )=2  Hence in both cases:   b^(2022) +(1/b^(2022) )=2

b2+b+1=0(b1)(b2+b+1)=0b31=0b=1,ω,ω2b=1istherootofb1=0b2+b+1b=ω,ω2b=ω:b2022+1b2022=ω2022+1ω2022=(ω3)674+1(ω3)674=1674+11674=2b=ω2:b2022+1b2022=(ω2)2022+1(ω2)2022=(ω3)2×674+1(ω3)2×674=12×674+112×674=2Henceinbothcases:b2022+1b2022=2

Commented by mathlove last updated on 19/Feb/22

thanks sir

thankssir

Commented by peter frank last updated on 19/Feb/22

thank you

thankyou

Commented by Rasheed.Sindhi last updated on 19/Feb/22

you′re welcome!

yourewelcome!

Terms of Service

Privacy Policy

Contact: info@tinkutara.com