Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 166417 by ajfour last updated on 19/Feb/22

Answered by mr W last updated on 20/Feb/22

Commented by mr W last updated on 20/Feb/22

OG=R−r  OF=3r  (R−r)^2 =(3r)^2 +r^2   9r^2 +2Rr−R^2 =0  ⇒r=((((√(10))−1)R)/9)  tan α=(1/3) ⇒α=tan^(−1) (1/3)  β=(π/4)−α  OA=(1+(√2))r  AG^2 =(1+(√2))^2 r^2 +((√(10))r)^2 −2(1+(√2))(√(10))r^2  cos β  AG^2 =(13+2(√2)−2(1+(√2))(√(10)) (1/( (√2)))((3/( (√(10))))+(1/( (√(10))))))r^2   AG^2 =(5−2(√2))r^2   AG=(√(5−2(√2)))r ✓  ((sin ϕ)/( (√(10))r))=((sin β)/( (√(5−2(√2)))r))  sin ϕ=((√(10))/( (√(5−2(√2)))))×(1/( (√2)))((3/( (√(10))))−(1/( (√(10)))))  sin ϕ=((√2)/( (√(5−2(√2))))) ⇒ϕ=π−sin^(−1) ((√2)/( (√(5−2(√2)))))  sin γ=(1/( (√(5−2(√2))))) ⇒γ=sin^(−1) (1/( (√(5−2(√2)))))  δ=π−ϕ−γ=sin^(−1) ((√2)/( (√(5−2(√2)))))−sin^(−1) (1/( (√(5−2(√2)))))  cos δ=((√((5−2(√2)−2)(5−2(√2)−1)))/(5−2(√2)))+((√2)/(5−2(√2)))  cos δ=(((√2)(1+(√(10−7(√2)))))/(5−2(√2)))  sin δ=(((√(2(5−2(√2)−1)))−(√(5−2(√2)−2)))/(5−2(√2)))  sin δ=((2(√(2−(√2)))+1−(√2))/(5−2(√2)))  OB=(1+(√2))r+AD cos δ  BD=AD sin δ  OB^2 +BD^2 =OD^2 =R^2   [(1+(√2))r+AD cos δ]^2 +(AD sin δ)^2 =R^2   (AD)^2 +2(1+(√2)) cos δ AD+(1+(√2))^2 −R^2 =0  (((AD)/r))^2 +2(1+(√2)) cos δ(((AD)/r))+(1+(√2))^2 −((9/( (√(10))−1)))^2 =0  (((AD)/r))^2 +2(1+(√2))(((√2)(1+(√(10−7(√2)))))/(5−2(√2)))(((AD)/r))+(1+(√2))^2 −((9/( (√(10))−1)))^2 =0  (((AD)/r))^2 +((2(14+9(√2))(1+(√(10−7(√2)))))/(17))(((AD)/r))−2(4+(√(10))−(√2))=0  ((AD)/r)=−(((14+9(√2))(1+(√(10−7(√2)))))/(17))+(√((((14+9(√2))^2 (1+(√(10−7(√2))))^2 )/(17^2 ))+2(4+(√(10))−(√2))))  ((AD)/r)=(((√(2722+578(√(10))−312(√2)+(716+504(√2))(√(10−7(√2)))))−(14+9(√2))(1+(√(10−7(√2)))))/(17))  Area of triangle  A=(AD)^2 sin δ cos δ  ≈1.5956802 r^2   ≈0.0921051R^2   ≈5.8947276

OG=RrOF=3r(Rr)2=(3r)2+r29r2+2RrR2=0r=(101)R9tanα=13α=tan113β=π4αOA=(1+2)rAG2=(1+2)2r2+(10r)22(1+2)10r2cosβAG2=(13+222(1+2)1012(310+110))r2AG2=(522)r2AG=522rsinφ10r=sinβ522rsinφ=10522×12(310110)sinφ=2522φ=πsin12522sinγ=1522γ=sin11522δ=πφγ=sin12522sin11522cosδ=(5222)(5221)522+2522cosδ=2(1+1072)522sinδ=2(5221)5222522sinδ=222+12522OB=(1+2)r+ADcosδBD=ADsinδOB2+BD2=OD2=R2[(1+2)r+ADcosδ]2+(ADsinδ)2=R2(AD)2+2(1+2)cosδAD+(1+2)2R2=0(ADr)2+2(1+2)cosδ(ADr)+(1+2)2(9101)2=0(ADr)2+2(1+2)2(1+1072)522(ADr)+(1+2)2(9101)2=0(ADr)2+2(14+92)(1+1072)17(ADr)2(4+102)=0ADr=(14+92)(1+1072)17+(14+92)2(1+1072)2172+2(4+102)ADr=2722+578103122+(716+5042)1072(14+92)(1+1072)17AreaoftriangleA=(AD)2sinδcosδ1.5956802r20.0921051R25.8947276

Commented by Tawa11 last updated on 20/Feb/22

Great sir.

Greatsir.

Commented by ajfour last updated on 20/Feb/22

say  (1+(1/( (√2))))r=βr=a  R=(1+(√(10)))r=γr  A(a,a)  eq. of right circle    (x−3r)^2 +(y−r)^2 =r^2   eq. of AD:   y=m(x−a)+a  ⊥ distance of AD from G is r.  ((−r+m(3r−a)+a)/( (√(1+m^2 ))))=r  ⇒ {−1+m(3−β)+β}^2 =1+m^2   from here we get m.     m≈ 0.250425  δ=45°−tan^(−1) m  tan δ=((1−m)/(1+m))  Now say  AB=λr  (a(√2)+λr)^2 +λ^2 r^2 tan^2 δ=R^2 =r^2 (1+(√(10)))^2   we get h from here.  ⇒  (β(√2)+λ)^2 +(((1−m)/(1+m)))^2 λ^2 =γ^2   △=(((1−m)/(1+m)))λ^2 r^2   λ≈ 1.631526783  △≈ 1.59568 r^2   (...is what i get, Sir)!

say(1+12)r=βr=aR=(1+10)r=γrA(a,a)eq.ofrightcircle(x3r)2+(yr)2=r2eq.ofAD:y=m(xa)+adistanceofADfromGisr.r+m(3ra)+a1+m2=r{1+m(3β)+β}2=1+m2fromherewegetm.m0.250425δ=45°tan1mtanδ=1m1+mNowsayAB=λr(a2+λr)2+λ2r2tan2δ=R2=r2(1+10)2wegethfromhere.(β2+λ)2+(1m1+m)2λ2=γ2=(1m1+m)λ2r2λ1.6315267831.59568r2(...iswhatiget,Sir)!

Commented by mr W last updated on 20/Feb/22

fine sir!  can A≈1.5956802 r^2  be comfirmed?

finesir!canA1.5956802r2becomfirmed?

Commented by ajfour last updated on 20/Feb/22

yeah, its absolutely confirmed!

yeah,itsabsolutelyconfirmed!

Commented by ajfour last updated on 20/Feb/22

Awesome solution sir.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com