Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 166436 by mnjuly1970 last updated on 20/Feb/22

        Show that :            Σ_(n=1) ^∞  (((−1)^( n)  H_( n) )/n^( 2) )  = −(5/8) ζ (3 )           ■ m.n                    −−−−−−−−−

$$ \\ $$$$\:\:\:\:\:\:\mathrm{S}{how}\:{that}\:: \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\:\frac{\left(−\mathrm{1}\right)^{\:{n}} \:{H}_{\:{n}} }{{n}^{\:\mathrm{2}} }\:\:=\:−\frac{\mathrm{5}}{\mathrm{8}}\:\zeta\:\left(\mathrm{3}\:\right)\:\:\:\:\:\:\:\:\:\:\:\blacksquare\:{m}.{n}\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\:−−−−−−−−− \\ $$

Answered by qaz last updated on 20/Feb/22

Σ_(n=1) ^∞ (((−1)^n H_n )/n^2 )  =Σ_(n=1) ^∞ (−1)^(n−1) H_n ∫_0 ^1 x^(n−1) lnxdx  =∫_0 ^1 ((ln(1+x)lnx)/(x(1+x)))dx  =∫_0 ^1 ((ln(1+x)lnx)/x)dx−∫_0 ^1 ((lm(1+x)lnx)/(1+x))dx  =−(1/2)∫_0 ^1 ((ln^2 x)/(1+x))dx+(1/2)∫_0 ^1 ((ln^2 (1+x))/x)dx  =(2^(1−3) −1)ζ(3)+(1/8)ζ(3)  =−(5/8)ζ(3)

$$\underset{\mathrm{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{\mathrm{n}} \mathrm{H}_{\mathrm{n}} }{\mathrm{n}^{\mathrm{2}} } \\ $$$$=\underset{\mathrm{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{\mathrm{n}−\mathrm{1}} \mathrm{H}_{\mathrm{n}} \int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{x}^{\mathrm{n}−\mathrm{1}} \mathrm{lnxdx} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{ln}\left(\mathrm{1}+\mathrm{x}\right)\mathrm{lnx}}{\mathrm{x}\left(\mathrm{1}+\mathrm{x}\right)}\mathrm{dx} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{ln}\left(\mathrm{1}+\mathrm{x}\right)\mathrm{lnx}}{\mathrm{x}}\mathrm{dx}−\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{lm}\left(\mathrm{1}+\mathrm{x}\right)\mathrm{lnx}}{\mathrm{1}+\mathrm{x}}\mathrm{dx} \\ $$$$=−\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{ln}^{\mathrm{2}} \mathrm{x}}{\mathrm{1}+\mathrm{x}}\mathrm{dx}+\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{ln}^{\mathrm{2}} \left(\mathrm{1}+\mathrm{x}\right)}{\mathrm{x}}\mathrm{dx} \\ $$$$=\left(\mathrm{2}^{\mathrm{1}−\mathrm{3}} −\mathrm{1}\right)\zeta\left(\mathrm{3}\right)+\frac{\mathrm{1}}{\mathrm{8}}\zeta\left(\mathrm{3}\right) \\ $$$$=−\frac{\mathrm{5}}{\mathrm{8}}\zeta\left(\mathrm{3}\right) \\ $$

Answered by mnjuly1970 last updated on 20/Feb/22

        Σ_(n=1) ^∞ (((−1)^( n+1) )/n) ∫_0 ^( 1) x^( n−1) ln(1−x)dx             = ∫_0 ^( 1) {ln(1−x).(1/x)Σ_(n=1) ^∞ (((−1)^( n+1) x^( n) )/n)dx}          = ∫_0 ^( 1) ((ln(1−x).ln(1+x ))/x) dx             = ((−5)/8) ζ (3)

$$\:\:\:\:\:\:\:\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{\:{n}+\mathrm{1}} }{{n}}\:\int_{\mathrm{0}} ^{\:\mathrm{1}} {x}^{\:{n}−\mathrm{1}} {ln}\left(\mathrm{1}−{x}\right){dx}\:\:\: \\ $$$$\:\:\:\:\:\:\:\:=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \left\{{ln}\left(\mathrm{1}−{x}\right).\frac{\mathrm{1}}{{x}}\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{\:{n}+\mathrm{1}} {x}^{\:{n}} }{{n}}{dx}\right\} \\ $$$$\:\:\:\:\:\:\:\:=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{{ln}\left(\mathrm{1}−{x}\right).{ln}\left(\mathrm{1}+{x}\:\right)}{{x}}\:{dx} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:=\:\frac{−\mathrm{5}}{\mathrm{8}}\:\zeta\:\left(\mathrm{3}\right)\: \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com