Question and Answers Forum

All Questions      Topic List

Number Theory Questions

Previous in All Question      Next in All Question      

Previous in Number Theory      Next in Number Theory      

Question Number 166475 by Rasheed.Sindhi last updated on 20/Feb/22

Find out n∈N   such that  n^2 +n is divisible by 30.

FindoutnNsuchthatn2+nisdivisibleby30.

Commented by mr W last updated on 20/Feb/22

n^2 +n=n(n+1)=30m  5×6 ⇒n=5  9×10 ⇒n=9  (30k−1)(30k) ⇒n=30k−1  (30k)(30k+1)⇒n=30k

n2+n=n(n+1)=30m5×6n=59×10n=9(30k1)(30k)n=30k1(30k)(30k+1)n=30k

Commented by mathsmine last updated on 20/Feb/22

n=15 worck also

n=15worckalso

Commented by Rasheed.Sindhi last updated on 21/Feb/22

Also   n=14,20,24

Alson=14,20,24

Commented by Rasheed.Sindhi last updated on 21/Feb/22

ThanX Sirs!

ThanXSirs!

Commented by SANOGO last updated on 21/Feb/22

merci bien

mercibien

Answered by Rasheed.Sindhi last updated on 21/Feb/22

n(n+1)=30k  •2∣n ∧ 15∣(n+1)  n=2k⇒15∣(2k+1)  2k+1=15m  n=2k=15m−1  n=2k=15m−1   determinant (((n=2k=15m−1)))     k=((15m−1)/2)∈N  n=2( ((15m−1)/2)∈N )   determinant ((m,1,3,5,(...),(2a+1),(...)),(n,(14),(44),(74),(...),(30a+14_(a=0,1,2,...) ),(...)))  •3∣n ∧ 10∣(n+1)  n=3k⇒10∣(3k+1)  3k+1=10m  n=3k=10m−1   determinant (((n=3k=10m−1)))               k=((10m−1)/3)∈N     n=3(((10m−1)/3)∈N)   determinant ((m,1,4,7,(10),(...),(1+3a),(...)),(n,9,(39),(69),(99),(...),(30a+9_(a=0,1,2,...) ),(...)))  •5∣n ∧ 6∣(n+1)  n=5k⇒6∣(5k+1)  5k+1=6m  n=5k=6m−1   determinant (((n=5k=6m−1)))            k=((6m−1)/5)∈N  n=5(((6m−1)/5)∈N)   determinant ((m,1,6,(11),(...),(5a+1),(...)),(n,5,(35),(65),(...),(30a+5_(a=0,1,2,...) ),(...)))  •6∣n ∧ 5∣(n+1)  n=6k⇒5∣(6k+1)  6k+1=5m  n=6k=5m−1   determinant (((n=6k=5m−1)))          k=((5m−1)/6)∈N  n=6(((5m−1)/6)∈N)   determinant ((m,5,(11),(17),(...),(6a+5),(...)),(n,(24),(54),(84),(...),(30a+24),(...)))  •10∣n ∧ 3∣(n+1)  n=10k⇒3∣(10k+1)  10k+1=3m  n=10k=3m−1   determinant (((n=10k=3m−1)))             k=((3m−1)/(10))∈N      n=10(((3m−1)/(10))∈N)   determinant ((m,7,(17),(27),(...),(10a+7),(...)),(n,(20),(50),(80),(...),(30a+ 2_(a=0,1,2,...) 0),(...)))  •15∣n ∧ 2∣(n+1)  n=15k⇒2∣(15k+1)  15k+1=2m  n=15k=2m−1   determinant (((n=15k=2m−1)))          k=((2m−1)/(15))∈N       n=15(((2m−1)/(15))∈N)   determinant ((m,8,(23),(38),(...),(15a+8),(...)),(n,(15),(45),(75),(...),(30a+15_(a=0,1,2,...) ),(...)))  •30∣n      n=30a   determinant ((0,(30),(60),(90),(...),(30a),(...)))   •30∣(n+1)  n+1=30a⇒n=30a−1⇒n=30a+29   determinant (((29),(59),(89),(...),(3a+29),(...)))    n=30a , 30a+5 , 30a+9 , 30a+14 ,           30a+15 , 30a+20 , 30a+24 , 30a+29           Where a=0,1,2,...

n(n+1)=30k2n15(n+1)n=2k15(2k+1)2k+1=15mn=2k=15m1n=2k=15m1n=2k=15m1k=15m12Nn=2(15m12N)m135...2a+1...n144474...30a+14a=0,1,2,......3n10(n+1)n=3k10(3k+1)3k+1=10mn=3k=10m1n=3k=10m1k=10m13Nn=3(10m13N)m14710...1+3a...n9396999...30a+9a=0,1,2,......5n6(n+1)n=5k6(5k+1)5k+1=6mn=5k=6m1n=5k=6m1k=6m15Nn=5(6m15N)m1611...5a+1...n53565...30a+5a=0,1,2,......6n5(n+1)n=6k5(6k+1)6k+1=5mn=6k=5m1n=6k=5m1k=5m16Nn=6(5m16N)m51117...6a+5...n245484...30a+24...10n3(n+1)n=10k3(10k+1)10k+1=3mn=10k=3m1n=10k=3m1k=3m110Nn=10(3m110N)m71727...10a+7...n205080...30a+20a=0,1,2,......15n2(n+1)n=15k2(15k+1)15k+1=2mn=15k=2m1n=15k=2m1k=2m115Nn=15(2m115N)m82338...15a+8...n154575...30a+15a=0,1,2,......30nn=30a0306090...30a...30(n+1)n+1=30an=30a1n=30a+29295989...3a+29...n=30a,30a+5,30a+9,30a+14,30a+15,30a+20,30a+24,30a+29Wherea=0,1,2,...

Commented by Rasheed.Sindhi last updated on 21/Feb/22

You′re welcome!

Yourewelcome!

Commented by SANOGO last updated on 21/Feb/22

merci bien

mercibien

Answered by Rasheed.Sindhi last updated on 21/Feb/22

n^2 +n≡0[30]⇒n^2 ≡−n[30]  ⇒n^2 ≡30−n[30]   determinant ((n,(n^2 [30]),((30−n)[30])),(0,0,0),(1,1,(29)),(2,4,(28)),(3,9,(27)),(4,(16),(26)),(5,(25),(25)),(6,6,(24)),(7,(19),(23)),(8,4,(22)),(9,(21),(21)),((10),(10),(20)),((11),1,(19)),((12),(24),(18)),((13),(19),(17)),((14),(16),(16)),((15),(15),(15)),((16),(19),(14)),((17),(19),(13)),((18),(24),(12)),((19),1,(11)),((20),(10),(10)),((21),(21),9),((22),4,8),((23),(19),7),((24),6,6),((25),(25),5),((26),(16),4),((27),9,3),((28),4,2),((29),1,1))  n=0,5,9,14,15,20,24,29  In general:  30k,30k+5,30k+9,30k+14,  30k+15,30k+20,30k+24,30k+29  for k=0,1,2,...

n2+n0[30]n2n[30]n230n[30]nn2[30](30n)[30]000112924283927416265252566247192384229212110102011119122418131917141616151515161914171913182412191112010102121922482319724662525526164279328422911n=0,5,9,14,15,20,24,29Ingeneral:30k,30k+5,30k+9,30k+14,30k+15,30k+20,30k+24,30k+29fork=0,1,2,...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com