Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 166511 by mkam last updated on 21/Feb/22

is the function f(x) = tan^(−1) (x) + tan^(−1) (2x) + tan^(−1) (3x) + .....   converge or diverge ?

$${is}\:{the}\:{function}\:{f}\left({x}\right)\:=\:{tan}^{−\mathrm{1}} \left({x}\right)\:+\:{tan}^{−\mathrm{1}} \left(\mathrm{2}{x}\right)\:+\:{tan}^{−\mathrm{1}} \left(\mathrm{3}{x}\right)\:+\:.....\: \\ $$$${converge}\:{or}\:{diverge}\:? \\ $$$$ \\ $$

Answered by alephzero last updated on 21/Feb/22

f(x) = Σ_(n=1) ^∞ arctg nx converges, if  lim_(n→∞) ((arctg (n+1)x)/(arctg nx)) < 1  1. f(x) converges at 0.  f(0) = arctg 0 + arctg 0 + ... = 0  2.f(x) diverges, if x ≠ 0  f(x) = Σ_(n=1) ^∞  arctg nx  2.1 ρ = lim_(n→∞) ((arctg (n+1)x)/(arctg nx))  (there x ≠ 0)  If ρ < 1 ⇒ Σ_(n=1) ^∞  arctg nx converges.  If ρ > 1 ⇒ Σ_(n=1) ^∞  arctg nx diverges.  If ρ = 1 ⇒ Σ_(n=1) ^∞  arctg nx can  converge and diverge.  ρ = lim_(n→∞) ((arctg (n+1)x)/(arctg nx)) =  = ((lim_(n→∞)  arctg (n+1)x)/(lim_(n→∞)  arctg nx)) = ((π/2)/(π/2)) = 1  2.2 σ = lim_(n→∞) ((arctg nx))^(1/n)   If σ < 1 ⇒ f(x) converges  If σ > 1 ⇒ f(x) diverges  If σ = 1 ⇒ f(x) can converge and  diverge.  σ = lim_(n→∞) ((arctg nx))^(1/n)  = 1  I think f(x) diverges, if x ≠ 0.

$${f}\left({x}\right)\:=\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\mathrm{arctg}\:{nx}\:\mathrm{converges},\:\mathrm{if} \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\frac{\mathrm{arctg}\:\left({n}+\mathrm{1}\right){x}}{\mathrm{arctg}\:{nx}}\:<\:\mathrm{1} \\ $$$$\mathrm{1}.\:{f}\left({x}\right)\:\mathrm{converges}\:\mathrm{at}\:\mathrm{0}. \\ $$$${f}\left(\mathrm{0}\right)\:=\:\mathrm{arctg}\:\mathrm{0}\:+\:\mathrm{arctg}\:\mathrm{0}\:+\:...\:=\:\mathrm{0} \\ $$$$\mathrm{2}.{f}\left({x}\right)\:\mathrm{diverges},\:\mathrm{if}\:{x}\:\neq\:\mathrm{0} \\ $$$${f}\left({x}\right)\:=\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\:\mathrm{arctg}\:{nx} \\ $$$$\mathrm{2}.\mathrm{1}\:\rho\:=\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}\frac{\mathrm{arctg}\:\left({n}+\mathrm{1}\right){x}}{\mathrm{arctg}\:{nx}} \\ $$$$\left(\mathrm{there}\:{x}\:\neq\:\mathrm{0}\right) \\ $$$$\mathrm{If}\:\rho\:<\:\mathrm{1}\:\Rightarrow\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\:\mathrm{arctg}\:{nx}\:\mathrm{converges}. \\ $$$$\mathrm{If}\:\rho\:>\:\mathrm{1}\:\Rightarrow\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\:\mathrm{arctg}\:{nx}\:\mathrm{diverges}. \\ $$$$\mathrm{If}\:\rho\:=\:\mathrm{1}\:\Rightarrow\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\:\mathrm{arctg}\:{nx}\:\mathrm{can} \\ $$$$\mathrm{converge}\:\mathrm{and}\:\mathrm{diverge}. \\ $$$$\rho\:=\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}\frac{\mathrm{arctg}\:\left({n}+\mathrm{1}\right){x}}{\mathrm{arctg}\:{nx}}\:= \\ $$$$=\:\frac{\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\mathrm{arctg}\:\left({n}+\mathrm{1}\right){x}}{\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\mathrm{arctg}\:{nx}}\:=\:\frac{\frac{\pi}{\mathrm{2}}}{\frac{\pi}{\mathrm{2}}}\:=\:\mathrm{1} \\ $$$$\mathrm{2}.\mathrm{2}\:\sigma\:=\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}\sqrt[{{n}}]{\mathrm{arctg}\:{nx}} \\ $$$$\mathrm{If}\:\sigma\:<\:\mathrm{1}\:\Rightarrow\:{f}\left({x}\right)\:\mathrm{converges} \\ $$$$\mathrm{If}\:\sigma\:>\:\mathrm{1}\:\Rightarrow\:{f}\left({x}\right)\:\mathrm{diverges} \\ $$$$\mathrm{If}\:\sigma\:=\:\mathrm{1}\:\Rightarrow\:{f}\left({x}\right)\:\mathrm{can}\:\mathrm{converge}\:\mathrm{and} \\ $$$$\mathrm{diverge}. \\ $$$$\sigma\:=\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}\sqrt[{{n}}]{\mathrm{arctg}\:{nx}}\:=\:\mathrm{1} \\ $$$$\mathrm{I}\:\mathrm{think}\:{f}\left({x}\right)\:\mathrm{diverges},\:\mathrm{if}\:{x}\:\neq\:\mathrm{0}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com