Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 166520 by ajfour last updated on 21/Feb/22

Commented by ajfour last updated on 21/Feb/22

If the circles have radii a,b,c   find maximum side length of  such an equilateral triangle.

Ifthecircleshaveradiia,b,cfindmaximumsidelengthofsuchanequilateraltriangle.

Commented by mr W last updated on 22/Feb/22

the general case see Q16194.

thegeneralcaseseeQ16194.

Answered by mr W last updated on 21/Feb/22

Commented by mr W last updated on 21/Feb/22

this is to find the triangle with the  maximum area, not the maximum  equilateral triangle.    tan α=(((1+cos β)b+(1+cos γ)c)/((1+sin β)b+(1+sin γ)c))  cos (α+γ)=((b/c)+1)(sin α−cos α)−(b/c) cos (α+β)    tan β=(((1+cos α)a+(1+cos γ)c)/((1+sin α)a−(1+sin γ)c))  cos (β−γ)=((a/c)−1)sin β−((a/c)+1)cos β−(a/c) cos (α+β)    tan γ=(((1+cos α)a−(1+cos β)b)/((1+sin α)a+(1+sin β)b))    solve for α,β,γ.

thisistofindthetrianglewiththemaximumarea,notthemaximumequilateraltriangle.tanα=(1+cosβ)b+(1+cosγ)c(1+sinβ)b+(1+sinγ)ccos(α+γ)=(bc+1)(sinαcosα)bccos(α+β)tanβ=(1+cosα)a+(1+cosγ)c(1+sinα)a(1+sinγ)ccos(βγ)=(ac1)sinβ(ac+1)cosβaccos(α+β)tanγ=(1+cosα)a(1+cosβ)b(1+sinα)a+(1+sinβ)bsolveforα,β,γ.

Commented by mr W last updated on 21/Feb/22

Commented by mr W last updated on 21/Feb/22

Answered by mr W last updated on 22/Feb/22

Commented by mr W last updated on 22/Feb/22

A(a,a)  B(−b,b)  C(c,−c)  say G(h,k)  eqn. of GP:  ((y−k)/(a−k))=((x−h)/(a−h))  (a−h)y=(a−k)x+a(k−h)  y=((a−k)/(a−h))x+((a(k−h))/(a−h))  eqn. of circle A:  (x−a)^2 +(y−a)^2 =a^2   (x−a)^2 +(((a−k)/(a−h))x+((a(k−h))/(a−h))−a)^2 =a^2   [(a−h)^2 +(a−k)^2 ](x−a)^2 =a^2 (a−h)^2   x−a=±((a(a−h))/( (√((a−h)^2 +(a−k)^2 ))))  x_P =a+(a/( (√(1+(((a−k)/(a−h)))^2 ))))  y_P =a+(a/( (√(1+(((a−h)/(a−k)))^2 ))))  eqn. of GB:  ((y−k)/(b−k))=((x−h)/(−b−h))  −(b+h)y=(b−k)x−b(h+k)  eqn. of circle B:  (x+b)^2 +(y−b)^2 =b^2   [(b+h)^2 +(b−k)^2 ](x+b)^2 =b^2 (b+h)^2   x+b=±((b(b+h))/( (√((b+h)^2 +(b−k)^2 ))))  x_Q =−b−(b/( (√(1+(((b−k)/(b+h)))^2 ))))  y_Q =b+(b/( (√(1+(((b+h)/(b−k)))^2 ))))  eqn. of GC:  ((y−k)/(−c−k))=((x−h)/(c−h))  (c−h)y=−(c+k)x+c(h+k)  eqn. of circle C:  (x−c)^2 +(y+c)^2 =c^2   [(c−h)^2 +(c+k)^2 ](x−c)^2 =c^2 (c−h)^2   x−c=±((c(c−h))/( (√((c−h)^2 +(c+k)^2 ))))  x_R =c+(c/( (√(1+(((c+k)/(c−h)))^2 ))))  y_R =−c−(c/( (√(1+(((c−h)/(c+k)))^2 ))))    s^2 =(x_P −x_Q )^2 +(y_P −y_Q )^2   s^2 =(a+b+(a/( (√(1+(((a−k)/(a−h)))^2 ))))+(b/( (√(1+(((b−k)/(b+h)))^2 )))))^2 +(a−b+(a/( (√(1+(((a−h)/(a−k)))^2 ))))−(b/( (√(1+(((b+h)/(b−k)))^2 )))))^2   s^2 =(x_P −x_R )^2 +(y_P −y_R )^2   s^2 =(a−c+(a/( (√(1+(((a−k)/(a−h)))^2 ))))−(c/( (√(1+(((c+k)/(c−h)))^2 )))))^2 +(a+c+(a/( (√(1+(((a−h)/(a−k)))^2 ))))+(c/( (√(1+(((c−h)/(c+k)))^2 )))))^2   s^2 =(x_Q −x_R )^2 +(y_Q −y_R )^2   s^2 =(b+c+(b/( (√(1+(((b−k)/(b+h)))^2 ))))+(c/( (√(1+(((c+k)/(c−h)))^2 )))))^2 +(b+c+(b/( (√(1+(((b+h)/(b−k)))^2 ))))+(c/( (√(1+(((c−h)/(c+k)))^2 )))))^2   solve for h,k,s  ....

A(a,a)B(b,b)C(c,c)sayG(h,k)eqn.ofGP:ykak=xhah(ah)y=(ak)x+a(kh)y=akahx+a(kh)aheqn.ofcircleA:(xa)2+(ya)2=a2(xa)2+(akahx+a(kh)aha)2=a2[(ah)2+(ak)2](xa)2=a2(ah)2xa=±a(ah)(ah)2+(ak)2xP=a+a1+(akah)2yP=a+a1+(ahak)2eqn.ofGB:ykbk=xhbh(b+h)y=(bk)xb(h+k)eqn.ofcircleB:(x+b)2+(yb)2=b2[(b+h)2+(bk)2](x+b)2=b2(b+h)2x+b=±b(b+h)(b+h)2+(bk)2xQ=bb1+(bkb+h)2yQ=b+b1+(b+hbk)2eqn.ofGC:ykck=xhch(ch)y=(c+k)x+c(h+k)eqn.ofcircleC:(xc)2+(y+c)2=c2[(ch)2+(c+k)2](xc)2=c2(ch)2xc=±c(ch)(ch)2+(c+k)2xR=c+c1+(c+kch)2yR=cc1+(chc+k)2s2=(xPxQ)2+(yPyQ)2s2=(a+b+a1+(akah)2+b1+(bkb+h)2)2+(ab+a1+(ahak)2b1+(b+hbk)2)2s2=(xPxR)2+(yPyR)2s2=(ac+a1+(akah)2c1+(c+kch)2)2+(a+c+a1+(ahak)2+c1+(chc+k)2)2s2=(xQxR)2+(yQyR)2s2=(b+c+b1+(bkb+h)2+c1+(c+kch)2)2+(b+c+b1+(b+hbk)2+c1+(chc+k)2)2solveforh,k,s....

Commented by ajfour last updated on 22/Feb/22

A(a,a)  P(a+acos θ, a+asin θ)  Q(a+acos θ−scos φ, a+asin θ−ssin φ)  (a−b+acos θ−scos φ)^2      +(a−b+asin θ−ssin φ)^2 =b^2   ⇒ a^2 +2a{cos θ(a−b−scos φ)                          +sin θ(a−b−ssin φ)}     +(a−b−scos φ)^2 +(a−b−ssin φ)^2        =b^2   (√((a−b−scos φ)^2 +(a−b−ssin φ)^2 ))     =m  mcos (θ−δ)=b^2 −a^2 −m^2   tan δ=((a−b−ssin φ)/(a−b−scos φ))      θ=δ+cos^(−1) (((b^2 −a^2 −m^2 )/m))   ..(i)  M midpoint of PQ  R{a+acos θ−((scos φ)/2)−((s(√3))/2)sin φ,         a+asin θ−((ssin φ)/2)−((s(√3))/2)cos φ}  And as  (RC)^2 =c^2   ⇒  (a+c+acos θ−((scos φ)/2)−((s(√3))/2)sin φ)^2   +(a+c+asin θ−((ssin φ)/2)−((s(√3))/2)cos φ)^2           =c^2   using (i) we have θ=f(φ)  now    g(s,φ)=0      s_(max)   can be found from g(s,φ)  graph.

A(a,a)P(a+acosθ,a+asinθ)Q(a+acosθscosϕ,a+asinθssinϕ)(ab+acosθscosϕ)2+(ab+asinθssinϕ)2=b2a2+2a{cosθ(abscosϕ)+sinθ(abssinϕ)}+(abscosϕ)2+(abssinϕ)2=b2(abscosϕ)2+(abssinϕ)2=mmcos(θδ)=b2a2m2tanδ=abssinϕabscosϕθ=δ+cos1(b2a2m2m)..(i)MmidpointofPQR{a+acosθscosϕ2s32sinϕ,a+asinθssinϕ2s32cosϕ}Andas(RC)2=c2(a+c+acosθscosϕ2s32sinϕ)2+(a+c+asinθssinϕ2s32cosϕ)2=c2using(i)wehaveθ=f(ϕ)nowg(s,ϕ)=0smaxcanbefoundfromg(s,ϕ)graph.

Commented by Tawa11 last updated on 22/Feb/22

Great sirs

Greatsirs

Terms of Service

Privacy Policy

Contact: info@tinkutara.com