Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 166522 by mnjuly1970 last updated on 21/Feb/22

Commented by CAIMAN last updated on 21/Feb/22

1

Answered by MJS_new last updated on 21/Feb/22

lim_(x→0)  ((1/(ln cos x))+(2/(sin^2  x))) =lim_(x→0)  ((2ln cos x +sin^2  x)/(sin^2  x ln cos x)) =  =lim_(x→0)  (((d/dx)(2ln cos x +sin^2  x))/((d/dx)(sin^2  x ln cos x))) =       [transforming]  =lim_(x→0)  −((2sin^2  x)/(2cos^2  x ln cos x −sin^2  x)) =  =lim_(x→0)  −(((d/dx)(2sin^2  x))/((d/dx)(2cos^2  x ln cos x −sin^2  x))) =       [transforming]  =lim_(x→0)  (1/(1+ln cos x)) =1

$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\left(\frac{\mathrm{1}}{\mathrm{ln}\:\mathrm{cos}\:{x}}+\frac{\mathrm{2}}{\mathrm{sin}^{\mathrm{2}} \:{x}}\right)\:=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{2ln}\:\mathrm{cos}\:{x}\:+\mathrm{sin}^{\mathrm{2}} \:{x}}{\mathrm{sin}^{\mathrm{2}} \:{x}\:\mathrm{ln}\:\mathrm{cos}\:{x}}\:= \\ $$$$=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\frac{{d}}{{dx}}\left(\mathrm{2ln}\:\mathrm{cos}\:{x}\:+\mathrm{sin}^{\mathrm{2}} \:{x}\right)}{\frac{{d}}{{dx}}\left(\mathrm{sin}^{\mathrm{2}} \:{x}\:\mathrm{ln}\:\mathrm{cos}\:{x}\right)}\:= \\ $$$$\:\:\:\:\:\left[\mathrm{transforming}\right] \\ $$$$=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:−\frac{\mathrm{2sin}^{\mathrm{2}} \:{x}}{\mathrm{2cos}^{\mathrm{2}} \:{x}\:\mathrm{ln}\:\mathrm{cos}\:{x}\:−\mathrm{sin}^{\mathrm{2}} \:{x}}\:= \\ $$$$=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:−\frac{\frac{{d}}{{dx}}\left(\mathrm{2sin}^{\mathrm{2}} \:{x}\right)}{\frac{{d}}{{dx}}\left(\mathrm{2cos}^{\mathrm{2}} \:{x}\:\mathrm{ln}\:\mathrm{cos}\:{x}\:−\mathrm{sin}^{\mathrm{2}} \:{x}\right)}\:= \\ $$$$\:\:\:\:\:\left[\mathrm{transforming}\right] \\ $$$$=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{1}}{\mathrm{1}+\mathrm{ln}\:\mathrm{cos}\:{x}}\:=\mathrm{1} \\ $$

Commented by mnjuly1970 last updated on 24/Feb/22

thanks slot sir

$${thanks}\:{slot}\:{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com