Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 166570 by cortano1 last updated on 22/Feb/22

Answered by bobhans last updated on 22/Feb/22

 I=∫ (((x+1)^2 +2)/((x+1)(√(x^2 +1)))) dx = ∫((x+1)/( (√(x^2 +1))))dx+∫(2/((x+1)(√(x^2 +1))))dx  I_1 =(1/2)∫ ((d(x^2 +1))/( (√(x^2 +1))))=(√(x^2 +1))+c_1   I_2 =∫ (dx/( (√(x^2 +1)))) , [ x=tan θ ]  I_2 =∫ ((sec^2 θ)/(sec θ)) dθ = ln ∣x+(√(x^2 +1)) ∣+c_2   I_3 =∫ (2/((x+1)(√(x^2 +1))))dx , [ x=tan y ]  I_3 =2∫ ((sec^2 y)/((1+tan y)sec y)) dy=2∫ ((sec y)/(1+tan y)) dy  I_3 =2∫(dy/(cos y+sin y))=2∫(dy/( (√2) cos (y−45°)))  I_3 =(√2) ∫ sec (y−45°)dy=(√2) ln ∣((1+sin (y−45°))/(cos (y−45°)))∣+c_3   I_3 =(√2) ln ∣(((√2)(1+(1/( (√2)))sin y−(1/( (√2)))cos y))/(cos y+sin y))∣+c_3   I_3 =(√2) ln ∣(((√2)+sin y−cos y)/(cos y+sin y))∣+c_3

I=(x+1)2+2(x+1)x2+1dx=x+1x2+1dx+2(x+1)x2+1dxI1=12d(x2+1)x2+1=x2+1+c1I2=dxx2+1,[x=tanθ]I2=sec2θsecθdθ=lnx+x2+1+c2I3=2(x+1)x2+1dx,[x=tany]I3=2sec2y(1+tany)secydy=2secy1+tanydyI3=2dycosy+siny=2dy2cos(y45°)I3=2sec(y45°)dy=2ln1+sin(y45°)cos(y45°)+c3I3=2ln2(1+12siny12cosy)cosy+siny+c3I3=2ln2+sinycosycosy+siny+c3

Commented by peter frank last updated on 22/Feb/22

great

great

Commented by MJS_new last updated on 23/Feb/22

I_3 =2∫(dx/((x+1)(√(x^2 +1))))=       [t=x+(√(x^2 +1)) → dx=((√(x^2 +1))/t)dt]  =4∫(dt/(t^2 +2t−1))=(√2)∫((1/(t+1−(√2)))−(1/(t+1+(√2))))dt=  =(√2)ln ((t+1−(√2))/(t+1+(√2))) =  =(√2)ln ∣((x−1+(√(2(x^2 +1))))/(x+1))∣ +C  but of course you get the same:  (((√2)+sin y −cos y)/(cos y +sin y))=       [y=arctan x]  =((x−1+(√(2(x^2 +1))))/(x+1))

I3=2dx(x+1)x2+1=[t=x+x2+1dx=x2+1tdt]=4dtt2+2t1=2(1t+121t+1+2)dt==2lnt+12t+1+2==2lnx1+2(x2+1)x+1+Cbutofcourseyougetthesame:2+sinycosycosy+siny=[y=arctanx]=x1+2(x2+1)x+1

Terms of Service

Privacy Policy

Contact: info@tinkutara.com