All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 166570 by cortano1 last updated on 22/Feb/22
Answered by bobhans last updated on 22/Feb/22
I=∫(x+1)2+2(x+1)x2+1dx=∫x+1x2+1dx+∫2(x+1)x2+1dxI1=12∫d(x2+1)x2+1=x2+1+c1I2=∫dxx2+1,[x=tanθ]I2=∫sec2θsecθdθ=ln∣x+x2+1∣+c2I3=∫2(x+1)x2+1dx,[x=tany]I3=2∫sec2y(1+tany)secydy=2∫secy1+tanydyI3=2∫dycosy+siny=2∫dy2cos(y−45°)I3=2∫sec(y−45°)dy=2ln∣1+sin(y−45°)cos(y−45°)∣+c3I3=2ln∣2(1+12siny−12cosy)cosy+siny∣+c3I3=2ln∣2+siny−cosycosy+siny∣+c3
Commented by peter frank last updated on 22/Feb/22
great
Commented by MJS_new last updated on 23/Feb/22
I3=2∫dx(x+1)x2+1=[t=x+x2+1→dx=x2+1tdt]=4∫dtt2+2t−1=2∫(1t+1−2−1t+1+2)dt==2lnt+1−2t+1+2==2ln∣x−1+2(x2+1)x+1∣+Cbutofcourseyougetthesame:2+siny−cosycosy+siny=[y=arctanx]=x−1+2(x2+1)x+1
Terms of Service
Privacy Policy
Contact: info@tinkutara.com