All Questions Topic List
Limits Questions
Previous in All Question Next in All Question
Previous in Limits Next in Limits
Question Number 166572 by qaz last updated on 22/Feb/22
limn→∞∑2nk=02−kcoskn=?
Answered by alephzero last updated on 23/Feb/22
limn→∞∑2nk=02−kcoskn=?Ifn→∞⇒kn→0∧2n→∞⇒∑∞k=02−kcoskn==∑∞k=02−kcos0=∑∞k=02−k==∑∞k=012k=1+ξ(2)=1+12−1==1+1=2ξ(s)=∑∞k=11skismyfunction.OnedayIwasstudyingconvergnessofthisseries.Inoticed,thatξ(s)=1s−1IchekedthiswithWolphramAlpha.Itwasright.So,thisfunctionrevealsthat00=−1(thisisweirdindeed)
Commented by MJS_new last updated on 22/Feb/22
00isnotdefined⇒00=−1iswrongbutyoucanfindlimitsoftheformL=limx→rf(x)g(x)withf(r)=g(r)=0andanyrealvalueofL.thisisnotaprooffor00=L∈R(becauseLcanbeanynumberwewouldgeti.e.00=−1=1=π2=37e...×)
Answered by Mathspace last updated on 22/Feb/22
cosu=1−u22+o(u2)⇒1−u22⩽cosu⩽1⇒1−(kn)22⩽coskn⩽1⇒2−k(1−k2n)⩽2−kcoskn⩽2−k⇒12k−12nk2k⩽2−kcoskn⩽12k⇒⇒∑k=02n12k−12n∑k=02nk2k⩽∑k=02n2−kcoskn⩽∑k=02n12kwehave∑k=02n(12)k=1−(12)2n+11−12=2(1−122n+1)→2∑k=0Nxk=1−xN+11−x⇒∑k=1Nkxk−1=ddx(xN+1−1x−1)=NxN+1−(N+1)xN+1(1−x)2⇒⇒∑k=12nkxk=x(1−x)2(2nx2n+1−(2n+1)x2n+1)⇒∑k=12nk2k=12(1−12)2(2n22n+1−2n+122n+1)=2(...)→2⇒12n∑k=12nk2k→0⇒limn→+∞∑k=02n2−kcoskn=2
Terms of Service
Privacy Policy
Contact: info@tinkutara.com