Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 166572 by qaz last updated on 22/Feb/22

lim_(n→∞) Σ_(k=0) ^(2n) 2^(−k) cos (√(k/n))=?

limn2nk=02kcoskn=?

Answered by alephzero last updated on 23/Feb/22

lim_(n→∞) Σ_(k=0) ^(2n) 2^(−k)  cos (√(k/n)) = ?  If n→∞ ⇒ (k/n)→0 ∧ 2n→∞  ⇒ Σ_(k=0) ^∞ 2^(−k)  cos (√(k/n)) =  = Σ_(k=0) ^∞ 2^(−k)  cos (√(0 ))=  Σ_(k=0) ^∞ 2^(−k)  =  = Σ_(k=0) ^∞ (1/2^k ) =  1 + ξ(2) = 1 + (1/(2−1)) =  = 1 + 1 = 2  ξ(s) = Σ_(k=1) ^∞ (1/s^k ) is my function.  One day I was studying convergness  of this series. I noticed, that  ξ(s) = (1/(s−1))  I cheked this with Wolphram  Alpha.  It was right. So, this  function reveals that (0/0) = −1  (this is weird indeed)

limn2nk=02kcoskn=?Ifnkn02nk=02kcoskn==k=02kcos0=k=02k==k=012k=1+ξ(2)=1+121==1+1=2ξ(s)=k=11skismyfunction.OnedayIwasstudyingconvergnessofthisseries.Inoticed,thatξ(s)=1s1IchekedthiswithWolphramAlpha.Itwasright.So,thisfunctionrevealsthat00=1(thisisweirdindeed)

Commented by MJS_new last updated on 22/Feb/22

(0/0) is not defined ⇒ (0/0)=−1 is wrong  but you can find limits of the form  L=lim_(x→r)  ((f(x))/(g(x))) with f(r)=g(r)=0 and any  real value of L. this is not a proof for  (0/0)=L∈R (because L can be any number we  would get i.e. (0/0)=−1=1=π^2 =(√(37))e ...×)

00isnotdefined00=1iswrongbutyoucanfindlimitsoftheformL=limxrf(x)g(x)withf(r)=g(r)=0andanyrealvalueofL.thisisnotaprooffor00=LR(becauseLcanbeanynumberwewouldgeti.e.00=1=1=π2=37e...×)

Answered by Mathspace last updated on 22/Feb/22

cosu =1−(u^2 /2) +o(u^2 ) ⇒  1−(u^2 /2)≤cosu≤1 ⇒  1−((((√(k/n)))^2 )/2)≤cos(√(k/n))≤1 ⇒  2^(−k) (1−(k/(2n)))≤2^(−k) cos(√(k/n))≤2^(−k)  ⇒  (1/2^k )−(1/(2n))(k/2^k )≤2^(−k) cos(√(k/n))≤(1/2^k ) ⇒  ⇒Σ_(k=0) ^(2n) (1/2^k )−(1/(2n))Σ_(k=0) ^(2n) (k/2^k )≤Σ_(k=0) ^(2n) 2^(−k) cos(√(k/n))≤Σ_(k=0) ^(2n)  (1/2^k )  we have Σ_(k=0) ^(2n ) ((1/2))^k =((1−((1/2))^(2n+1) )/(1−(1/2)))  =2(1−(1/2^(2n+1) ))→2  Σ_(k=0) ^N  x^k   =((1−x^(N+1) )/(1−x)) ⇒  Σ_(k=1) ^N kx^(k−1) =(d/dx)(((x^(N+1) −1)/(x−1)))  =((Nx^(N+1) −(N+1)x^N +1)/((1−x)^2 )) ⇒  ⇒Σ_(k=1) ^(2n) kx^k =(x/((1−x)^2 ))(2nx^(2n+1) −(2n+1)x^(2n) +1) ⇒  Σ_(k=1) ^(2n) (k/2^k ) =(1/(2(1−(1/2))^2 ))(((2n)/2^(2n+1) )−((2n+1)/2^(2n) )+1)  =2(...)→2 ⇒(1/(2n))Σ_(k=1) ^(2n) (k/2^k )→0 ⇒  lim_(n→+∞) Σ_(k=0) ^(2n) 2^(−k) cos(√(k/n))=2

cosu=1u22+o(u2)1u22cosu11(kn)22coskn12k(1k2n)2kcoskn2k12k12nk2k2kcoskn12kk=02n12k12nk=02nk2kk=02n2kcosknk=02n12kwehavek=02n(12)k=1(12)2n+1112=2(1122n+1)2k=0Nxk=1xN+11xk=1Nkxk1=ddx(xN+11x1)=NxN+1(N+1)xN+1(1x)2k=12nkxk=x(1x)2(2nx2n+1(2n+1)x2n+1)k=12nk2k=12(112)2(2n22n+12n+122n+1)=2(...)212nk=12nk2k0limn+k=02n2kcoskn=2

Terms of Service

Privacy Policy

Contact: info@tinkutara.com