Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 166627 by cortano1 last updated on 23/Feb/22

   If f(x)=x+x^3 +x^5 +...+x^n  and      lim_(x→1) ((f^2 (x)−f^2 (1))/(x−1)) = 2^(10)  then n = ?

$$\:\:\:\mathrm{If}\:\mathrm{f}\left(\mathrm{x}\right)=\mathrm{x}+\mathrm{x}^{\mathrm{3}} +\mathrm{x}^{\mathrm{5}} +...+\mathrm{x}^{\mathrm{n}} \:\mathrm{and}\: \\ $$$$\:\:\:\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\frac{\mathrm{f}^{\mathrm{2}} \left(\mathrm{x}\right)−\mathrm{f}^{\mathrm{2}} \left(\mathrm{1}\right)}{\mathrm{x}−\mathrm{1}}\:=\:\mathrm{2}^{\mathrm{10}} \:\mathrm{then}\:\mathrm{n}\:=\:? \\ $$

Commented by MJS_new last updated on 23/Feb/22

15

$$\mathrm{15} \\ $$

Commented by cortano1 last updated on 23/Feb/22

why?

$$\mathrm{why}? \\ $$

Answered by MJS_new last updated on 23/Feb/22

I took f^2 (x) = (f(x))^2   f(x)=x+x^3 +x^5 +...+x^(2k−1)  ⇒ f(1)=k  f(x)=Σ_(j=1) ^k x^(2j−1) =((x(x^(2k) −1))/(x^2 −1)); lim_(x→1)  ((x(x^(2k) −1))/(x^2 −1)) =k ⇒ f(1)=k  ((f^2 (x)−f^2 (1))/(x−1))=((x^(4k+2) −2x^(2k+2) −k^2 x^2 +x^2 −k^2 )/(x^5 −x^4 −2x^3 +2x^2 +x−1))  lim_(x→1)  ((f^2 (x)−f^2 (1))/(x−1)) =  =lim_(x→1)  (((d^3 /dx^3 )[x^(4k+2) −2x^(2k+2) −k^2 x^2 +x^2 −k^2 ])/((d^3 /dx^3 )[x^5 −x^4 −2x^3 +2x^2 +x−1]))=  =lim_(x→1)  ((2kx((2k+1)(4k+1)x^(4k−2) −(k+1)(2k+1)x^(2k−2) −3kx))/(3(5x^2 −2x−1))) =2k^3   2k^3 =2^(10)   k^3 =2^9   k=2^3 =8  n=2k−1=15

$$\mathrm{I}\:\mathrm{took}\:{f}^{\mathrm{2}} \left({x}\right)\:=\:\left({f}\left({x}\right)\right)^{\mathrm{2}} \\ $$$${f}\left({x}\right)={x}+{x}^{\mathrm{3}} +{x}^{\mathrm{5}} +...+{x}^{\mathrm{2}{k}−\mathrm{1}} \:\Rightarrow\:{f}\left(\mathrm{1}\right)={k} \\ $$$${f}\left({x}\right)=\underset{{j}=\mathrm{1}} {\overset{{k}} {\sum}}{x}^{\mathrm{2}{j}−\mathrm{1}} =\frac{{x}\left({x}^{\mathrm{2}{k}} −\mathrm{1}\right)}{{x}^{\mathrm{2}} −\mathrm{1}};\:\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\:\frac{{x}\left({x}^{\mathrm{2}{k}} −\mathrm{1}\right)}{{x}^{\mathrm{2}} −\mathrm{1}}\:={k}\:\Rightarrow\:{f}\left(\mathrm{1}\right)={k} \\ $$$$\frac{{f}^{\mathrm{2}} \left({x}\right)−{f}^{\mathrm{2}} \left(\mathrm{1}\right)}{{x}−\mathrm{1}}=\frac{{x}^{\mathrm{4}{k}+\mathrm{2}} −\mathrm{2}{x}^{\mathrm{2}{k}+\mathrm{2}} −{k}^{\mathrm{2}} {x}^{\mathrm{2}} +{x}^{\mathrm{2}} −{k}^{\mathrm{2}} }{{x}^{\mathrm{5}} −{x}^{\mathrm{4}} −\mathrm{2}{x}^{\mathrm{3}} +\mathrm{2}{x}^{\mathrm{2}} +{x}−\mathrm{1}} \\ $$$$\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\:\frac{{f}^{\mathrm{2}} \left({x}\right)−{f}^{\mathrm{2}} \left(\mathrm{1}\right)}{{x}−\mathrm{1}}\:= \\ $$$$=\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\:\frac{\frac{{d}^{\mathrm{3}} }{{dx}^{\mathrm{3}} }\left[{x}^{\mathrm{4}{k}+\mathrm{2}} −\mathrm{2}{x}^{\mathrm{2}{k}+\mathrm{2}} −{k}^{\mathrm{2}} {x}^{\mathrm{2}} +{x}^{\mathrm{2}} −{k}^{\mathrm{2}} \right]}{\frac{{d}^{\mathrm{3}} }{{dx}^{\mathrm{3}} }\left[{x}^{\mathrm{5}} −{x}^{\mathrm{4}} −\mathrm{2}{x}^{\mathrm{3}} +\mathrm{2}{x}^{\mathrm{2}} +{x}−\mathrm{1}\right]}= \\ $$$$=\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\:\frac{\mathrm{2}{kx}\left(\left(\mathrm{2}{k}+\mathrm{1}\right)\left(\mathrm{4}{k}+\mathrm{1}\right){x}^{\mathrm{4}{k}−\mathrm{2}} −\left({k}+\mathrm{1}\right)\left(\mathrm{2}{k}+\mathrm{1}\right){x}^{\mathrm{2}{k}−\mathrm{2}} −\mathrm{3}{kx}\right)}{\mathrm{3}\left(\mathrm{5}{x}^{\mathrm{2}} −\mathrm{2}{x}−\mathrm{1}\right)}\:=\mathrm{2}{k}^{\mathrm{3}} \\ $$$$\mathrm{2}{k}^{\mathrm{3}} =\mathrm{2}^{\mathrm{10}} \\ $$$${k}^{\mathrm{3}} =\mathrm{2}^{\mathrm{9}} \\ $$$${k}=\mathrm{2}^{\mathrm{3}} =\mathrm{8} \\ $$$${n}=\mathrm{2}{k}−\mathrm{1}=\mathrm{15} \\ $$

Commented by cortano1 last updated on 24/Feb/22

oo i think f^2 (x)=(fof)(x)    what standart form (fof)(x)?

$$\mathrm{oo}\:\mathrm{i}\:\mathrm{think}\:\mathrm{f}^{\mathrm{2}} \left(\mathrm{x}\right)=\left(\mathrm{fof}\right)\left(\mathrm{x}\right)\: \\ $$$$\:\mathrm{what}\:\mathrm{standart}\:\mathrm{form}\:\left(\mathrm{fof}\right)\left(\mathrm{x}\right)? \\ $$

Commented by MJS_new last updated on 24/Feb/22

I′m not sure what′s standard nowadays.  also f○g for some means f(g(x)) and for  others g(f(x))  too much confusion  if sin^2  x means (sin x)^2  then why sin^(−1)  x  doesn′t mean (sin x)^(−1) ?  what about ln^(−1)  x? is it (1/(ln x)) or e^x ?  if we use f^( n) (x) for the n^(th)  derivate then why  f^( −1) (x) ≠ ∫f(x)dx?  better ask in each case what is meant...

$$\mathrm{I}'\mathrm{m}\:\mathrm{not}\:\mathrm{sure}\:\mathrm{what}'\mathrm{s}\:\mathrm{standard}\:\mathrm{nowadays}. \\ $$$$\mathrm{also}\:{f}\circ{g}\:\mathrm{for}\:\mathrm{some}\:\mathrm{means}\:{f}\left({g}\left({x}\right)\right)\:\mathrm{and}\:\mathrm{for} \\ $$$$\mathrm{others}\:{g}\left({f}\left({x}\right)\right) \\ $$$$\mathrm{too}\:\mathrm{much}\:\mathrm{confusion} \\ $$$$\mathrm{if}\:\mathrm{sin}^{\mathrm{2}} \:{x}\:\mathrm{means}\:\left(\mathrm{sin}\:{x}\right)^{\mathrm{2}} \:\mathrm{then}\:\mathrm{why}\:\mathrm{sin}^{−\mathrm{1}} \:{x} \\ $$$$\mathrm{doesn}'\mathrm{t}\:\mathrm{mean}\:\left(\mathrm{sin}\:{x}\right)^{−\mathrm{1}} ? \\ $$$$\mathrm{what}\:\mathrm{about}\:\mathrm{ln}^{−\mathrm{1}} \:{x}?\:\mathrm{is}\:\mathrm{it}\:\frac{\mathrm{1}}{\mathrm{ln}\:{x}}\:\mathrm{or}\:\mathrm{e}^{{x}} ? \\ $$$$\mathrm{if}\:\mathrm{we}\:\mathrm{use}\:{f}^{\:{n}} \left({x}\right)\:\mathrm{for}\:\mathrm{the}\:{n}^{\mathrm{th}} \:\mathrm{derivate}\:\mathrm{then}\:\mathrm{why} \\ $$$${f}^{\:−\mathrm{1}} \left({x}\right)\:\neq\:\int{f}\left({x}\right){dx}? \\ $$$$\mathrm{better}\:\mathrm{ask}\:\mathrm{in}\:\mathrm{each}\:\mathrm{case}\:\mathrm{what}\:\mathrm{is}\:\mathrm{meant}... \\ $$

Commented by cortano1 last updated on 24/Feb/22

thanks you sir

$$\mathrm{thanks}\:\mathrm{you}\:\mathrm{sir} \\ $$

Answered by mahdipoor last updated on 23/Feb/22

lim_(x→1) ((f^2 (x)−f^2 (1))/(x−1))=lim_(x→1) (((f(x)−f(1))/(x−1)))(f(x)+f(1))=  f^′ (1)×2f(1)=(1+3+5+...+n)×2(1+...+1)=  (((n+1)/2))^2 ×2×(((n+1)/2))=2^(10) ⇒((n+1)/2)=2^3 ⇒  n=15

$$\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\frac{{f}^{\mathrm{2}} \left({x}\right)−{f}^{\mathrm{2}} \left(\mathrm{1}\right)}{{x}−\mathrm{1}}=\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\left(\frac{{f}\left({x}\right)−{f}\left(\mathrm{1}\right)}{{x}−\mathrm{1}}\right)\left({f}\left({x}\right)+{f}\left(\mathrm{1}\right)\right)= \\ $$$${f}^{'} \left(\mathrm{1}\right)×\mathrm{2}{f}\left(\mathrm{1}\right)=\left(\mathrm{1}+\mathrm{3}+\mathrm{5}+...+{n}\right)×\mathrm{2}\left(\mathrm{1}+...+\mathrm{1}\right)= \\ $$$$\left(\frac{{n}+\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} ×\mathrm{2}×\left(\frac{{n}+\mathrm{1}}{\mathrm{2}}\right)=\mathrm{2}^{\mathrm{10}} \Rightarrow\frac{{n}+\mathrm{1}}{\mathrm{2}}=\mathrm{2}^{\mathrm{3}} \Rightarrow \\ $$$${n}=\mathrm{15} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com