Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 166648 by alcohol last updated on 24/Feb/22

u_(n+1)  = (√(2+u_n ))  show that u_(n+1) −u_n  and u_n −u_(n−1)   have same sign

$${u}_{{n}+\mathrm{1}} \:=\:\sqrt{\mathrm{2}+{u}_{{n}} } \\ $$$${show}\:{that}\:{u}_{{n}+\mathrm{1}} −{u}_{{n}} \:{and}\:{u}_{{n}} −{u}_{{n}−\mathrm{1}} \\ $$$${have}\:{same}\:{sign} \\ $$$$ \\ $$

Answered by mr W last updated on 24/Feb/22

u_(n+1) =(√(u_n +2))≥0  at most one term can be zero, all other  terms are positive, i.e. u_(n+1) +u_n >0.  u_(n+1) ^2 =u_n +2  u_n ^2 =u_(n−1) +2  u_(n+1) ^2 −u_n ^2 =u_n −u_(n−1)   (u_(n+1) −u_n )(u_(n+1) +u_n )=u_n −u_(n−1)   ((u_n −u_(n−1) )/(u_(n+1) −u_n ))=u_(n+1) +u_n >0  ⇒u_(n+1) −u_n  and u_n −u_(n−1)  have same sign.

$${u}_{{n}+\mathrm{1}} =\sqrt{{u}_{{n}} +\mathrm{2}}\geqslant\mathrm{0} \\ $$$${at}\:{most}\:{one}\:{term}\:{can}\:{be}\:{zero},\:{all}\:{other} \\ $$$${terms}\:{are}\:{positive},\:{i}.{e}.\:{u}_{{n}+\mathrm{1}} +{u}_{{n}} >\mathrm{0}. \\ $$$${u}_{{n}+\mathrm{1}} ^{\mathrm{2}} ={u}_{{n}} +\mathrm{2} \\ $$$${u}_{{n}} ^{\mathrm{2}} ={u}_{{n}−\mathrm{1}} +\mathrm{2} \\ $$$${u}_{{n}+\mathrm{1}} ^{\mathrm{2}} −{u}_{{n}} ^{\mathrm{2}} ={u}_{{n}} −{u}_{{n}−\mathrm{1}} \\ $$$$\left({u}_{{n}+\mathrm{1}} −{u}_{{n}} \right)\left({u}_{{n}+\mathrm{1}} +{u}_{{n}} \right)={u}_{{n}} −{u}_{{n}−\mathrm{1}} \\ $$$$\frac{{u}_{{n}} −{u}_{{n}−\mathrm{1}} }{{u}_{{n}+\mathrm{1}} −{u}_{{n}} }={u}_{{n}+\mathrm{1}} +{u}_{{n}} >\mathrm{0} \\ $$$$\Rightarrow{u}_{{n}+\mathrm{1}} −{u}_{{n}} \:{and}\:{u}_{{n}} −{u}_{{n}−\mathrm{1}} \:{have}\:{same}\:{sign}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com