Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 166660 by mnjuly1970 last updated on 24/Feb/22

     calculate      Ω = Σ_(n=0) ^∞ (1/((3n)!))  = ?

$$ \\ $$$$\:\:\:{calculate} \\ $$$$\:\:\:\:\Omega\:=\:\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\left(\mathrm{3}{n}\right)!}\:\:=\:? \\ $$$$\:\:\:\:\: \\ $$

Answered by amin96 last updated on 24/Feb/22

e^x =Σ_(n=0) ^∞ (x^n /(n!))_(1)     e^(xk) =Σ_(n=0) ^∞ (((xk)^n )/(n!)) _(2)   e^(xk^2 ) =Σ_(n=0) ^∞ ((x^n k^(2n) )/(n!))_(3)   (1)+(2)+(3)=3×(Σ_(n=0) ^∞ (x^(3n) /((3n)!)))_(S)   S=((e^x +e^(kx) +e^(k^2 x) )/3)    k=((−1+i(√3))/2)    k^2 =((−1−i(√3))/2)  S=(1/3)×(e^x +e^(x×((−1+i(√3))/2)) +e^(x×((−1−i(√3))/2)) )=  =(1/3)×(e^x +e^(−(x/2)) (e^((xi(√3))/2) +e^(−((xi(√3))/2)) ))=(1/3)×(e^x +2e^(−(x/2)) cos(((x(√3))/2)))  x=1  S=Σ_(n=0) ^∞ (1/((3n)!))=(1/3)×(e+2e^(−(1/2)) cos(((√3)/2))) by MATH.AMIN

$$\underset{\mathrm{1}} {\underbrace{\boldsymbol{\mathrm{e}}^{\boldsymbol{\mathrm{x}}} =\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\boldsymbol{\mathrm{x}}^{\boldsymbol{\mathrm{n}}} }{\boldsymbol{\mathrm{n}}!}}}\:\:\:\underset{\mathrm{2}} {\underbrace{\:\boldsymbol{\mathrm{e}}^{\boldsymbol{\mathrm{xk}}} =\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(\boldsymbol{{xk}}\right)^{\boldsymbol{{n}}} }{\boldsymbol{{n}}!}\:}}\:\:\underset{\mathrm{3}} {\underbrace{\boldsymbol{{e}}^{\boldsymbol{{xk}}^{\mathrm{2}} } =\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\boldsymbol{{x}}^{\boldsymbol{{n}}} \boldsymbol{{k}}^{\mathrm{2}\boldsymbol{{n}}} }{\boldsymbol{{n}}!}}} \\ $$$$\left(\mathrm{1}\right)+\left(\mathrm{2}\right)+\left(\mathrm{3}\right)=\mathrm{3}×\underset{{S}} {\underbrace{\left(\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{{x}^{\mathrm{3}{n}} }{\left(\mathrm{3}{n}\right)!}\right)}} \\ $$$${S}=\frac{{e}^{{x}} +{e}^{{kx}} +{e}^{{k}^{\mathrm{2}} {x}} }{\mathrm{3}}\:\:\:\:{k}=\frac{−\mathrm{1}+{i}\sqrt{\mathrm{3}}}{\mathrm{2}}\:\:\:\:{k}^{\mathrm{2}} =\frac{−\mathrm{1}−{i}\sqrt{\mathrm{3}}}{\mathrm{2}} \\ $$$${S}=\frac{\mathrm{1}}{\mathrm{3}}×\left({e}^{{x}} +{e}^{{x}×\frac{−\mathrm{1}+{i}\sqrt{\mathrm{3}}}{\mathrm{2}}} +{e}^{{x}×\frac{−\mathrm{1}−{i}\sqrt{\mathrm{3}}}{\mathrm{2}}} \right)= \\ $$$$=\frac{\mathrm{1}}{\mathrm{3}}×\left({e}^{{x}} +{e}^{−\frac{{x}}{\mathrm{2}}} \left({e}^{\frac{{xi}\sqrt{\mathrm{3}}}{\mathrm{2}}} +{e}^{−\frac{{xi}\sqrt{\mathrm{3}}}{\mathrm{2}}} \right)\right)=\frac{\mathrm{1}}{\mathrm{3}}×\left({e}^{{x}} +\mathrm{2}{e}^{−\frac{{x}}{\mathrm{2}}} {cos}\left(\frac{{x}\sqrt{\mathrm{3}}}{\mathrm{2}}\right)\right) \\ $$$${x}=\mathrm{1} \\ $$$${S}=\underset{\boldsymbol{\mathrm{n}}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\left(\mathrm{3}\boldsymbol{\mathrm{n}}\right)!}=\frac{\mathrm{1}}{\mathrm{3}}×\left({e}+\mathrm{2}{e}^{−\frac{\mathrm{1}}{\mathrm{2}}} {cos}\left(\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\right)\right)\:\boldsymbol{\mathrm{by}}\:\boldsymbol{\mathrm{MATH}}.\boldsymbol{\mathrm{AMIN}} \\ $$

Commented by mnjuly1970 last updated on 25/Feb/22

   bravo sir

$$\:\:\:{bravo}\:{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com