Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 166738 by ajfour last updated on 26/Feb/22

Commented by ajfour last updated on 26/Feb/22

  Find r_(max)  in terms of b.

Findrmaxintermsofb.

Answered by mr W last updated on 27/Feb/22

P(a cos θ, b sin θ)  ((√((b sin θ−r)^2 −r^2 ))/r)=((b sin θ)/(a cos θ))  let (b/a)=μ≤1, (b/r)=ξ  (√((ξ sin θ−1)^2 −1))=((μ sin θ)/(cos θ))  ξ=(1/(sin θ))(1+(√((μ^2 /((1/(sin^2  θ))−1))+1)))  let s=(1/(sin θ))  ξ=s(1+(√((μ^2 /(s^2 −1))+1)))  (dξ/ds)=1+(√((μ^2 /(s^2 −1))+1))−((μ^2 s^2 )/( (s^2 −1)^2 (√((μ^2 /(s^2 −1))+1))))=0  (s^2 −1)^2 +(√((μ^2 /(s^2 −1))+1))=μ^2   (√((μ^2 /(s^2 −1))+1))=((μ/(s^2 −1)))^2 −1  ((μ/(s^2 −1)))^3 −2((μ/(s^2 −1)))−μ=0  Δ=(μ^2 /4)−(8/(27))≤(1/4)−(8/(27))=−(5/(108))<0  (μ/(s^2 −1))=((2(√6))/3) sin ((π/3)+(1/3)sin^(−1) ((3(√6)μ)/8)) (valid for μ≤(√((32 )/(27)))=((4(√6))/9))  if μ>((4(√6))/9),   (μ/(s^2 −1))=(((√((μ^2 /4)−(8/(27))))+(μ/2)))^(1/3) −(((√((μ^2 /4)−(8/(27))))−(μ/2)))^(1/3)   s=(1/(sin θ))=(√(1+(((√6)μ)/(4 sin ((π/3)+(1/3)sin^(−1) ((3(√6)μ)/8))))))  for μ≤((4(√6))/9)  s=(1/(sin θ))=(√(1+(μ/( (((√((μ^2 /4)−(8/(27))))+(μ/2)))^(1/3) −(((√((μ^2 /4)−(8/(27))))−(μ/2)))^(1/3) ))))  for μ<((4(√6))/9)  ξ_(min) =(b/r_(max) )=s(1+(√((μ^2 /(s^2 −1))+1)))    examples:  μ=(b/a)=0.5 ⇒ (r_(max) /b)≈0.3728  μ=(b/a)=2 ⇒ (r_(max) /b)≈0.1987

P(acosθ,bsinθ)(bsinθr)2r2r=bsinθacosθletba=μ1,br=ξ(ξsinθ1)21=μsinθcosθξ=1sinθ(1+μ21sin2θ1+1)lets=1sinθξ=s(1+μ2s21+1)dξds=1+μ2s21+1μ2s2(s21)2μ2s21+1=0(s21)2+μ2s21+1=μ2μ2s21+1=(μs21)21(μs21)32(μs21)μ=0Δ=μ2482714827=5108<0μs21=263sin(π3+13sin136μ8)(validforμ3227=469)ifμ>469,μs21=μ24827+μ23μ24827μ23s=1sinθ=1+6μ4sin(π3+13sin136μ8)forμ469s=1sinθ=1+μμ24827+μ23μ24827μ23forμ<469ξmin=brmax=s(1+μ2s21+1)examples:μ=ba=0.5rmaxb0.3728μ=ba=2rmaxb0.1987

Commented by mr W last updated on 27/Feb/22

Commented by mr W last updated on 27/Feb/22

Commented by mr W last updated on 27/Feb/22

Commented by ajfour last updated on 27/Feb/22

Great effort n solution Sir.  Thanks a lot.

GreateffortnsolutionSir.Thanksalot.

Answered by ajfour last updated on 26/Feb/22

P(cos θ, bsin θ)  r+(r/(cos φ))=bsin θ  tan φ=btan θ  ⇒  r=((bsin θ)/(1+(√(1+b^2 tan^2 θ))))         (b/r)=(1/(sin θ))+(√((1/(sin^2 θ))+(b^2 /(cos^2 θ))))  say  sin θ=s  (b/r)=(1/s)+(√((1/s^2 )+(b^2 /(1−s^2 ))))   ((d(b/r))/ds)=−(1/s^2 )+((−(1/s^3 )+((b^2 s)/((1−s^2 )^2 )))/( (√((1/s^2 )+(1/(1−s^2 ))))))=0  ⇒  (1/s^4 )((1/s^2 )+(1/(1−s^2 )))           =(1/s^6 )+((b^4 s^2 )/((1−s^2 )^4 ))−((2b^2 )/(s^2 (1−s^2 )^2 ))  ⇒  (1−s^2 )^3 +2b^2 s^2 (1−s^2 )^2 =b^4 s^6   ⇒ ((1/s^2 )−1)^3 +2b^2 ((1/s^2 )−1)^2 −b^4 =0  say    (1/((1/s^2 )−1))=t  ⇒  t^3 −((2t)/b^2 )−(1/b^4 )=0  t={(1/(2b^4 ))+(1/(2b^4 ))(√(1−((32b^2 )/(27))))}^(1/3)                   +{(1/(2b^4 ))−(1/(2b^4 ))(√(1−((32b^2 )/(27))))}^(1/3)   D>0  if  b^2 <((27)/(32))

P(cosθ,bsinθ)r+rcosϕ=bsinθtanϕ=btanθr=bsinθ1+1+b2tan2θbr=1sinθ+1sin2θ+b2cos2θsaysinθ=sbr=1s+1s2+b21s2d(b/r)ds=1s2+1s3+b2s(1s2)21s2+11s2=01s4(1s2+11s2)=1s6+b4s2(1s2)42b2s2(1s2)2(1s2)3+2b2s2(1s2)2=b4s6(1s21)3+2b2(1s21)2b4=0say11s21=tt32tb21b4=0t={12b4+12b4132b227}1/3+{12b412b4132b227}1/3D>0ifb2<2732

Answered by MJS_new last updated on 27/Feb/22

for 0≤x≤1 and the triangle has the  sides u, v, w  u=v=(√(b^2 +(1−b^2 )x^2 )) and w=2x  ⇒ the radius of the incircle is  r=((bx(√(1−x^2 )))/(x+(√(b^2 +(1−b^2 )x^2 ))))  r′=0 ⇔ (1−b^2 )x^4 −2(1−b^2 )x^2 −b^2 =x(x^2 −2)(√(b^2 +(1−b^2 )x^2 ))  (obviously this is always true for x=1)  squaring both sides and transforming we get  (x^2 −1)(x^6 −((2−3b^2 )/(1−b^2 ))x^4 −((3b^2 x^2 )/(1−b^2 ))+(b^2 /(1−b^2 )))=0  and we can always find an exact solution  for any given b with  x=(√y)∧y=z+((2−3b^2 )/(3(1−b^2 )))  and  z^3 −((4−3b^2 )/(3(1−b^2 )^2 ))z−((16−45b^2 +27b^4 )/(27(1−b^2 )^3 ))=0  ⇒  0<b<1∨1<b<((4(√6))/9)  z=−((2(√(4−3b^2 )))/(3(1−b^2 )))sin ((1/3)arcsin ((16−45b^2 +27b^4 )/(2(4−3b^2 )^(3/2) )))  b=1  r′ reduces to x^3 −2x+1=0 ⇒ x=−(1/2)+((√5)/2)  ((4(√6))/9)≤b<((2(√3))/3)∨b>((2(√3))/3)  we get z with Cardano′s Formula  b=((2(√3))/3)  z^3 +4=0 ⇒ z=−2^(2/3)

for0x1andthetrianglehasthesidesu,v,wu=v=b2+(1b2)x2andw=2xtheradiusoftheincircleisr=bx1x2x+b2+(1b2)x2r=0(1b2)x42(1b2)x2b2=x(x22)b2+(1b2)x2(obviouslythisisalwaystrueforx=1)squaringbothsidesandtransformingweget(x21)(x623b21b2x43b2x21b2+b21b2)=0andwecanalwaysfindanexactsolutionforanygivenbwithx=yy=z+23b23(1b2)andz343b23(1b2)2z1645b2+27b427(1b2)3=00<b<11<b<469z=243b23(1b2)sin(13arcsin1645b2+27b42(43b2)3/2)b=1rreducestox32x+1=0x=12+52469b<233b>233wegetzwithCardanosFormulab=233z3+4=0z=22/3

Terms of Service

Privacy Policy

Contact: info@tinkutara.com