All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 166829 by mnjuly1970 last updated on 01/Mar/22
calculateIf,f(x)=(x2+1)(x2+x−2)(x4−1)(x2+2x−3)+163+x2+3(1+x+x2)then,f′(1)=?◼m.n
Answered by mathsmine last updated on 01/Mar/22
f(x)=(x2+1)g(x)3+x2+3(1+x+x2)f′(x)=(2xg(x)3+g′(x)3g23(x)(x2+1)+xx2+3)1+x+x2−(1+2x)((x2+1)g(x)3+x2+3)(1+x+x2)2f′(1)=2163+2g′(1)3(16)29+123−2163+23g(x)=(x2+x−2)(x4−1)(x2+2x−3)+16(fgh)′=f′gh+fg′h+fgh′1rootofx2+x−2,x4−1,x2+2x−3⇒g′(1)=0f′(1)=2163+123−2163+23=−12
Terms of Service
Privacy Policy
Contact: info@tinkutara.com