Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 166834 by leicianocosta last updated on 28/Feb/22

Answered by Rasheed.Sindhi last updated on 28/Feb/22

Commented by Rasheed.Sindhi last updated on 28/Feb/22

Let AC=BC=a  AC^2 +BC^2 =AB^2    a^2 +a^2 =6^2 ⇒a=3(√2)   CD^2 =AC^2 +AD^2 −2.AC.AD.cos A           =(3(√2) )^2 +2^2 −2.3(√2) .2.cos 45           =18+4−12(√2) .(1/( (√2) ))=10  CD=(√(10))   △BCD:  ((BD)/(sin C))=((CD)/(sin B))⇒(4/(sin C))=(((√(10)) )/(sin 45))  ⇒(√(10)) sin C=4((1/( (√2))))         sin C=(4/( (√(10)) .(√2)))=(2/( (√5)))           C=sin^(−1) ((2/( (√5) )))           D=180−(45+sin^(−1) ((2/( (√5)))))       BDE=D−45      =180−45−sin^(−1) ((2/( (√5))))−45      =90−sin^(−1) ((2/( (√5))))  △BDE:      ∠BDE=90−sin^(−1) ((2/( (√5))))     BD=4     ∠B=45      ∠E=180−(45+90−sin^(−1) ((2/( (√5)))))              =45+sin^(−1) ((2/( (√5))))  ▲BDE=((BD^2 .sinB.sinD  )/(2 sinE ))              =((4^2 sin45.sin(90−sin^(−1) ((2/( (√5)))))  )/(2(45+sin^(−1) ((2/( (√5)))))))              =((((16)/( (√2))).cos(sin^(−1) ((2/( (√5)))))  )/(90+2sin^(−1) ((2/( (√5)))))))

LetAC=BC=aAC2+BC2=AB2a2+a2=62a=32CD2=AC2+AD22.AC.AD.cosA=(32)2+222.32.2.cos45=18+4122.12=10CD=10BCD:BDsinC=CDsinB4sinC=10sin4510sinC=4(12)sinC=410.2=25C=sin1(25)D=180(45+sin1(25))BDE=D45=18045sin1(25)45=90sin1(25)BDE:BDE=90sin1(25)BD=4B=45E=180(45+90sin1(25))=45+sin1(25)BDE=BD2.sinB.sinD2sinE=42sin45.sin(90sin1(25))2(45+sin1(25))=162.cos(sin1(25))90+2sin1(25))

Commented by Tawa11 last updated on 01/Mar/22

Great sir

Greatsir

Answered by mr W last updated on 28/Feb/22

Commented by mr W last updated on 28/Feb/22

AC=3(√2)  CD^2 =((2/( (√2))))^2 +(3(√2)−(2/( (√2))))^2 =10 ⇒CD=(√(10))  ((sin α)/2)=((sin 45°)/( (√(10))))  sin α=(1/( (√5))) ⇒cos α=(2/( (√5)))  DF=FE  CE×cos α+CE×sin α=CD  CE=((√(10))/((1/( (√5)))+(2/( (√5)))))=((5(√2))/3)  BE=3(√2)−((5(√2))/3)=((4(√2))/3)  x=(1/2)×4×((4(√2))/3)×((√2)/2)=(8/3)

AC=32CD2=(22)2+(3222)2=10CD=10sinα2=sin45°10sinα=15cosα=25DF=FECE×cosα+CE×sinα=CDCE=1015+25=523BE=32523=423x=12×4×423×22=83

Commented by Tawa11 last updated on 01/Mar/22

Great sir

Greatsir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com