Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 166954 by cortano1 last updated on 03/Mar/22

 Given x^3 −3x^2 (√2) +6x−2(√2)−8=0   then x^5 −41x^2 +2022 =?

Givenx33x22+6x228=0thenx541x2+2022=?

Answered by som(math1967) last updated on 03/Mar/22

x^3 −3.x^2 .(√2)+3.x.((√2))^2 −((√2))^3 =8  ⇒(x−(√2))^3 =2^3   ⇒x=2+(√2)  ∴ x^5 −41x^2 +2022  =(2+(√2))^5 −41(2+(√2))^2 +2022  =32+5×16×(√2)+10×8×2+10×4×2(√2)   +5×2×4+4(√2)−41(4+4(√2)+2)+2022  =32+160+40+80(√2)+80(√2)+4(√2)  −246−164(√2)+2022  =2022−14=2008

x33.x2.2+3.x.(2)2(2)3=8(x2)3=23x=2+2x541x2+2022=(2+2)541(2+2)2+2022=32+5×16×2+10×8×2+10×4×22+5×2×4+4241(4+42+2)+2022=32+160+40+802+802+422461642+2022=202214=2008

Terms of Service

Privacy Policy

Contact: info@tinkutara.com