Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 166956 by mnjuly1970 last updated on 03/Mar/22

      calculate      ∫_0 ^( ∞) (((√x) arctan(x))/(1+x^( 2) ))dx =?

calculate0xarctan(x)1+x2dx=?

Answered by ArielVyny last updated on 03/Mar/22

dt=((arctan(x))/(1+x^2 ))dx→t=(1/2)(arctanx)^2   (√(2t))=arctanx→x=arctan((√2)t)  ∫_0 ^(π^2 /( 8)) arctan((√2)t)dt=  (1/( (√2)))∫_0 ^(π^2 /8) arctan(u)du   we cant stop here   =Σ_(n≥0) (((−1)^n ((√2))^(2n+1) )/(2n+1))∫_0 ^(π^2 /8) t^(2n+1) dt  =Σ_(n≥0) (((−1)^n ((√2))^(2n+1) )/(2n+1))[(1/(2n+2))(π^2 /8)]  =(π^2 /8)Σ_(n≥0) (((−1)^n ((√2))^(2n+1) )/((2n+1)(2n+2)))  =(π^2 /8)[Σ(((−1)^n ((√2))^(2n+1) )/(2n+1))]−(π^2 /8)Σ_(n≥0) (((−1)^n ((√2))^(2n+1) )/(2n+2))  =(π^2 /8)arctan((√2))(π^2 /(16))Σ_(n≥1) (((−1)^(n+1) (2)^n )/n)  =(π^2 /8)arctan((√2))+(π^2 /(16))ln(3)

dt=arctan(x)1+x2dxt=12(arctanx)22t=arctanxx=arctan(2t)0π28arctan(2t)dt=120π28arctan(u)duwecantstophere=n0(1)n(2)2n+12n+10π28t2n+1dt=n0(1)n(2)2n+12n+1[12n+2π28]=π28n0(1)n(2)2n+1(2n+1)(2n+2)=π28[Σ(1)n(2)2n+12n+1]π28n0(1)n(2)2n+12n+2=π28arctan(2)π216n1(1)n+1(2)nn=π28arctan(2)+π216ln(3)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com