Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 166958 by cortano1 last updated on 03/Mar/22

  If polynomial x^3 −9x^2 +11x−1=0    have the roots are a,b an c .   Given Δ = (√a) + (√b) + (√c) then     Δ^4 −18Δ^2 −8Δ =?

Ifpolynomialx39x2+11x1=0havetherootsarea,banc.GivenΔ=a+b+cthenΔ418Δ28Δ=?

Commented by MJS_new last updated on 03/Mar/22

the answer is −37    x^3 −9x^2 +11x−1=0  let x=p+3  p^3 −16p−22=0    Δ^4 −18Δ^2 −8Δ−χ=0  (Δ^2 −αΔ−β)(Δ^2 +αΔ−γ)=0  β=−(α^2 /2)+(4/α)+9∧γ=−(α^2 /2)−(4/α)+9  α=(√(q+12))  q^3 +4(χ−27)q+16(3χ+23)=0  if we let χ=−37 ⇒ q=4p    but someone else please explain this; I don′t  fully understand what I did...

theansweris37x39x2+11x1=0letx=p+3p316p22=0Δ418Δ28Δχ=0(Δ2αΔβ)(Δ2+αΔγ)=0β=α22+4α+9γ=α224α+9α=q+12q3+4(χ27)q+16(3χ+23)=0ifweletχ=37q=4pbutsomeoneelsepleaseexplainthis;IdontfullyunderstandwhatIdid...

Answered by mr W last updated on 03/Mar/22

a+b+c=9  ab+bc+ca=11  abc=1    Δ=(√a)+(√b)+(√c)    Δ^2 =a+b+c+2((√(ab))+(√(bc))+(√(ca)))  Δ^2 =9+2((√(ab))+(√(bc))+(√(ca)))    Δ^4 =81+36((√(ab))+(√(bc))+(√(ca)))+4(ab+bc+ca+2(√(a^2 bc))+2(√(ab^2 c))+2(√(abc^2 )))  Δ^4 =81+36((√(ab))+(√(bc))+(√(ca)))+4(11+2(√a)+2(√b)+2(√c))  Δ^4 =125+36((√(ab))+(√(bc))+(√(ca)))+8((√a)+(√b)+(√c))    Δ^4 −18Δ^2 −8Δ  =125+36((√(ab))+(√(bc))+(√(ca)))+8((√a)+(√b)+(√c))      −18×9−18×2((√(ab))+(√(bc))+(√(ca)))      −8×((√a)+(√b)+(√c))  =125−18×9  =−37

a+b+c=9ab+bc+ca=11abc=1Δ=a+b+cΔ2=a+b+c+2(ab+bc+ca)Δ2=9+2(ab+bc+ca)Δ4=81+36(ab+bc+ca)+4(ab+bc+ca+2a2bc+2ab2c+2abc2)Δ4=81+36(ab+bc+ca)+4(11+2a+2b+2c)Δ4=125+36(ab+bc+ca)+8(a+b+c)Δ418Δ28Δ=125+36(ab+bc+ca)+8(a+b+c)18×918×2(ab+bc+ca)8×(a+b+c)=12518×9=37

Answered by null last updated on 03/Mar/22

upsilon

upsilon

Answered by null last updated on 04/Mar/22

upsilon=−37  υ=−37

upsilon=37υ=37

Terms of Service

Privacy Policy

Contact: info@tinkutara.com