All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 166959 by cortano1 last updated on 03/Mar/22
γ=∫ex(sinx+1)cosx+1dx=?
Answered by ArielVyny last updated on 03/Mar/22
γ=∫ex(sinx+1)cosx+1dxt=tan(x2)→2arctan(t)=x∫e2arctant2t1+t2+11−t21+t2+1×21+t2dt∫e2arctag(t)(2t1+t2+1)dt∫21+t2e2arctg(t)tdt+∫e2arctg(t)dtdu=21+t2e2arctg(t)→u=e2arctg(t)v=t→dv=1[te2arctg(t)]−∫e2arctg(t)dt+∫e2arctg(t)dt=te2arctg(t)γ=tan(x2)ex
Terms of Service
Privacy Policy
Contact: info@tinkutara.com