Question and Answers Forum

All Questions      Topic List

Matrices and Determinants Questions

Previous in All Question      Next in All Question      

Previous in Matrices and Determinants      Next in Matrices and Determinants      

Question Number 167183 by alcohol last updated on 09/Mar/22

Commented by ArielVyny last updated on 09/Mar/22

i let question (f) for your attention

$${i}\:{let}\:{question}\:\left({f}\right)\:{for}\:{your}\:{attention} \\ $$

Answered by ArielVyny last updated on 09/Mar/22

a)showing that (U_n ) and (V_n ) are strictly  positive sequences.  reasonnig by reccurence on   we have U_0 =1 and V_0 =2  also are strictly  positive  we suppose that (U_n ) ans (V_n ) are strictly   positive then we have U_n >0  and V_n >0  now we will sbowing that U_(n+1)  and V_(n+1)   are strictly posirive  V_(n+1) =((U_n +V_n )/2)  according that U_n  and V_n  are  stritly positive and 2>0 (evidence) we  have V_(n+1) >0  and U_(n+1) =((U_n V_n )/V_(n+1) )  we know that V_(n+1) >0  and U_n V_n  is strictly positive because it′s a  product of two positives values

$$\left.{a}\right){showing}\:{that}\:\left({U}_{{n}} \right)\:{and}\:\left({V}_{{n}} \right)\:{are}\:{strictly} \\ $$$${positive}\:{sequences}. \\ $$$${reasonnig}\:{by}\:{reccurence}\:{on}\: \\ $$$${we}\:{have}\:{U}_{\mathrm{0}} =\mathrm{1}\:{and}\:{V}_{\mathrm{0}} =\mathrm{2}\:\:{also}\:{are}\:{strictly} \\ $$$${positive} \\ $$$${we}\:{suppose}\:{that}\:\left({U}_{{n}} \right)\:{ans}\:\left({V}_{{n}} \right)\:{are}\:{strictly}\: \\ $$$${positive}\:{then}\:{we}\:{have}\:{U}_{{n}} >\mathrm{0}\:\:{and}\:{V}_{{n}} >\mathrm{0} \\ $$$${now}\:{we}\:{will}\:{sbowing}\:{that}\:{U}_{{n}+\mathrm{1}} \:{and}\:{V}_{{n}+\mathrm{1}} \\ $$$${are}\:{strictly}\:{posirive} \\ $$$${V}_{{n}+\mathrm{1}} =\frac{{U}_{{n}} +{V}_{{n}} }{\mathrm{2}}\:\:{according}\:{that}\:{U}_{{n}} \:{and}\:{V}_{{n}} \:{are} \\ $$$${stritly}\:{positive}\:{and}\:\mathrm{2}>\mathrm{0}\:\left({evidence}\right)\:{we} \\ $$$${have}\:{V}_{{n}+\mathrm{1}} >\mathrm{0} \\ $$$${and}\:{U}_{{n}+\mathrm{1}} =\frac{{U}_{{n}} {V}_{{n}} }{{V}_{{n}+\mathrm{1}} }\:\:{we}\:{know}\:{that}\:{V}_{{n}+\mathrm{1}} >\mathrm{0} \\ $$$${and}\:{U}_{{n}} {V}_{{n}} \:{is}\:{strictly}\:{positive}\:{because}\:{it}'{s}\:{a} \\ $$$${product}\:{of}\:{two}\:{positives}\:{values} \\ $$$$ \\ $$

Answered by ArielVyny last updated on 09/Mar/22

(b) shosing that 0≤W_(n+1) ≤(1/2)W_n   w_n =v_n −u_n →w_(n+1) =v_(n+1) −u_(n+1)   →w_(n+1) =((u_n +v_n )/2)−((2u_n v_n )/(u_n +v_n ))                   =(((u_n +v_n )^2 )/(2(u_n +v_n )))−((4u_n v_n )/(2(u_n +v_n )))                   =((u_n ^2 +v_n ^2 −2u_n v_n )/(2(u_n +v_n )))=(((u_n −v_n )^2 )/(2(u_n +v_n )))≥0 (question a)  0≤w_(n+1)   →w_(n+1) −(w_n /2)=((u_n +v_n )/2)−((2u_n v_n )/(u_n +v_n ))−(v_n /2)+(u_n /2)                              =u_n −((2u_n v_n )/(u_n +v_n ))=u_n (1−((2v_n )/(u_n +v_n )))  w_(n+1) ≥0→w_n ≥0 and v_n ≥u_n   ((2v_n )/(u_n +v_n ))=(v_n /v_(n+1) )≥(1/2)→2v_n ≥v_(n+1) →2v_n −(u_n /2)−(v_n /2)≥0                                                  →(3/2)v_n −(u_n /2)≥0 (true) because v_n >u_n   then we show that 1−((2v_n )/(u_n +v_n ))≤0 then  w_(n+1) −(w_n /2)≤0  conclusion 0≤w_(n+1) ≤(w_n /2)

$$\left({b}\right)\:{shosing}\:{that}\:\mathrm{0}\leqslant{W}_{{n}+\mathrm{1}} \leqslant\frac{\mathrm{1}}{\mathrm{2}}{W}_{{n}} \\ $$$${w}_{{n}} ={v}_{{n}} −{u}_{{n}} \rightarrow{w}_{{n}+\mathrm{1}} ={v}_{{n}+\mathrm{1}} −{u}_{{n}+\mathrm{1}} \\ $$$$\rightarrow{w}_{{n}+\mathrm{1}} =\frac{{u}_{{n}} +{v}_{{n}} }{\mathrm{2}}−\frac{\mathrm{2}{u}_{{n}} {v}_{{n}} }{{u}_{{n}} +{v}_{{n}} } \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\frac{\left({u}_{{n}} +{v}_{{n}} \right)^{\mathrm{2}} }{\mathrm{2}\left({u}_{{n}} +{v}_{{n}} \right)}−\frac{\mathrm{4}{u}_{{n}} {v}_{{n}} }{\mathrm{2}\left({u}_{{n}} +{v}_{{n}} \right)} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\frac{{u}_{{n}} ^{\mathrm{2}} +{v}_{{n}} ^{\mathrm{2}} −\mathrm{2}{u}_{{n}} {v}_{{n}} }{\mathrm{2}\left({u}_{{n}} +{v}_{{n}} \right)}=\frac{\left({u}_{{n}} −{v}_{{n}} \right)^{\mathrm{2}} }{\mathrm{2}\left({u}_{{n}} +{v}_{{n}} \right)}\geqslant\mathrm{0}\:\left({question}\:{a}\right) \\ $$$$\mathrm{0}\leqslant{w}_{{n}+\mathrm{1}} \\ $$$$\rightarrow{w}_{{n}+\mathrm{1}} −\frac{{w}_{{n}} }{\mathrm{2}}=\frac{{u}_{{n}} +{v}_{{n}} }{\mathrm{2}}−\frac{\mathrm{2}{u}_{{n}} {v}_{{n}} }{{u}_{{n}} +{v}_{{n}} }−\frac{{v}_{{n}} }{\mathrm{2}}+\frac{{u}_{{n}} }{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:={u}_{{n}} −\frac{\mathrm{2}{u}_{{n}} {v}_{{n}} }{{u}_{{n}} +{v}_{{n}} }={u}_{{n}} \left(\mathrm{1}−\frac{\mathrm{2}{v}_{{n}} }{{u}_{{n}} +{v}_{{n}} }\right) \\ $$$${w}_{{n}+\mathrm{1}} \geqslant\mathrm{0}\rightarrow{w}_{{n}} \geqslant\mathrm{0}\:{and}\:{v}_{{n}} \geqslant{u}_{{n}} \\ $$$$\frac{\mathrm{2}{v}_{{n}} }{{u}_{{n}} +{v}_{{n}} }=\frac{{v}_{{n}} }{{v}_{{n}+\mathrm{1}} }\geqslant\frac{\mathrm{1}}{\mathrm{2}}\rightarrow\mathrm{2}{v}_{{n}} \geqslant{v}_{{n}+\mathrm{1}} \rightarrow\mathrm{2}{v}_{{n}} −\frac{{u}_{{n}} }{\mathrm{2}}−\frac{{v}_{{n}} }{\mathrm{2}}\geqslant\mathrm{0} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\rightarrow\frac{\mathrm{3}}{\mathrm{2}}{v}_{{n}} −\frac{{u}_{{n}} }{\mathrm{2}}\geqslant\mathrm{0}\:\left({true}\right)\:{because}\:{v}_{{n}} >{u}_{{n}} \\ $$$${then}\:{we}\:{show}\:{that}\:\mathrm{1}−\frac{\mathrm{2}{v}_{{n}} }{{u}_{{n}} +{v}_{{n}} }\leqslant\mathrm{0}\:{then} \\ $$$${w}_{{n}+\mathrm{1}} −\frac{{w}_{{n}} }{\mathrm{2}}\leqslant\mathrm{0} \\ $$$${conclusion}\:\mathrm{0}\leqslant{w}_{{n}+\mathrm{1}} \leqslant\frac{{w}_{{n}} }{\mathrm{2}} \\ $$

Answered by ArielVyny last updated on 09/Mar/22

c)show that 0≤w_(n+1) ≤(1/2^n )  by reccurence on n  0≤w_0 ≤1 with w_0 =1  suppose thant 0≤w_n ≤(1/2^(n−1) )  knowing that (1/2^(n−1) )≥(1/2^n ) and  w_(n+1) ≤(w_n /2)≤w_n   0≤w_n ≤(1/2^(n−1) )→0≤(w_n /2)≤(1/2^n )→0≤w_(n+1) ≤(1/2^n )  wd deduce that lim w_(n+1) =0 (by gendarm′s theorem)  and lim w_(n+1) =lim w_n =0

$$\left.{c}\right){show}\:{that}\:\mathrm{0}\leqslant{w}_{{n}+\mathrm{1}} \leqslant\frac{\mathrm{1}}{\mathrm{2}^{{n}} } \\ $$$${by}\:{reccurence}\:{on}\:{n} \\ $$$$\mathrm{0}\leqslant{w}_{\mathrm{0}} \leqslant\mathrm{1}\:{with}\:{w}_{\mathrm{0}} =\mathrm{1} \\ $$$${suppose}\:{thant}\:\mathrm{0}\leqslant{w}_{{n}} \leqslant\frac{\mathrm{1}}{\mathrm{2}^{{n}−\mathrm{1}} } \\ $$$${knowing}\:{that}\:\frac{\mathrm{1}}{\mathrm{2}^{{n}−\mathrm{1}} }\geqslant\frac{\mathrm{1}}{\mathrm{2}^{{n}} }\:{and}\:\:{w}_{{n}+\mathrm{1}} \leqslant\frac{{w}_{{n}} }{\mathrm{2}}\leqslant{w}_{{n}} \\ $$$$\mathrm{0}\leqslant{w}_{{n}} \leqslant\frac{\mathrm{1}}{\mathrm{2}^{{n}−\mathrm{1}} }\rightarrow\mathrm{0}\leqslant\frac{{w}_{{n}} }{\mathrm{2}}\leqslant\frac{\mathrm{1}}{\mathrm{2}^{{n}} }\rightarrow\mathrm{0}\leqslant{w}_{{n}+\mathrm{1}} \leqslant\frac{\mathrm{1}}{\mathrm{2}^{{n}} } \\ $$$${wd}\:{deduce}\:{that}\:{lim}\:{w}_{{n}+\mathrm{1}} =\mathrm{0}\:\left({by}\:{gendarm}'{s}\:{theorem}\right) \\ $$$${and}\:{lim}\:{w}_{{n}+\mathrm{1}} ={lim}\:{w}_{{n}} =\mathrm{0} \\ $$

Answered by ArielVyny last updated on 09/Mar/22

d)v_0 =2 and v_1 =((1+2)/2)=(3/2)  u_1 =(4/3) after coputing u_1  and v_1  we admot that  (v_n ) decrease and (u_n ) increase  and   lim w_n =lim(v_n −u_n )=0  and sequenses  (u_n ) an (v_n ) are adjacent

$$\left.{d}\right){v}_{\mathrm{0}} =\mathrm{2}\:{and}\:{v}_{\mathrm{1}} =\frac{\mathrm{1}+\mathrm{2}}{\mathrm{2}}=\frac{\mathrm{3}}{\mathrm{2}} \\ $$$${u}_{\mathrm{1}} =\frac{\mathrm{4}}{\mathrm{3}}\:{after}\:{coputing}\:{u}_{\mathrm{1}} \:{and}\:{v}_{\mathrm{1}} \:{we}\:{admot}\:{that} \\ $$$$\left({v}_{{n}} \right)\:{decrease}\:{and}\:\left({u}_{{n}} \right)\:{increase} \\ $$$${and}\:\:\:{lim}\:{w}_{{n}} ={lim}\left({v}_{{n}} −{u}_{{n}} \right)=\mathrm{0} \\ $$$${and}\:{sequenses}\:\:\left({u}_{{n}} \right)\:{an}\:\left({v}_{{n}} \right)\:{are}\:{adjacent} \\ $$

Answered by ArielVyny last updated on 09/Mar/22

u_(n+1) =((u_n v_n )/v_(n+1) )→u_(n+1) v_(n+1) =u_n v_n  for all n we deduce  that (u_n v_n ) is constant

$${u}_{{n}+\mathrm{1}} =\frac{{u}_{{n}} {v}_{{n}} }{{v}_{{n}+\mathrm{1}} }\rightarrow{u}_{{n}+\mathrm{1}} {v}_{{n}+\mathrm{1}} ={u}_{{n}} {v}_{{n}} \:{for}\:{all}\:{n}\:{we}\:{deduce} \\ $$$${that}\:\left({u}_{{n}} {v}_{{n}} \right)\:{is}\:{constant} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com