Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 167295 by mnjuly1970 last updated on 12/Mar/22

Answered by qaz last updated on 12/Mar/22

lim_(n→∞) ((((2n)!)/(n^n n!)))^(1/n)   =lim_(n→∞) (((2n)!)/(n^n n!))∙(((n−1)^(n−1) (n−1)!)/((2n−2)!))  =lim_(n→∞) ((2(2n−1))/(n−1))(1−(1/n))^n   =4e^(−1)

limn((2n)!nnn!)1/n=limn(2n)!nnn!(n1)n1(n1)!(2n2)!=limn2(2n1)n1(11n)n=4e1

Answered by Mathspace last updated on 13/Mar/22

n!∼ n^n e^(−n) (√(2πn))  (2n)!∼(2n)^(2n ) e^(−2n) (√(4πn)) ⇒  (((2n)!)/(n^n .n!))=((4^n n^(2n)  e^(−2n) 2(√(πn)))/(n^n n^n  e^(−n) (√(2πn))))  =(√2).4^n  .e^(−n)  ⇒  ((((2n)!)/(n^n n!)))^(1/n) ∼((√2))^(1/n) .4.e^(−1) →(4/e) ⇒  lim_(n→+∞) ((((2n)!)/(n^n n!)))^(1/n) =(4/e)

n!nnen2πn(2n)!(2n)2ne2n4πn(2n)!nn.n!=4nn2ne2n2πnnnnnen2πn=2.4n.en((2n)!nnn!)1n(2)1n.4.e14elimn+((2n)!nnn!)1n=4e

Terms of Service

Privacy Policy

Contact: info@tinkutara.com