All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 1673 by 123456 last updated on 31/Aug/15
ω∈R,ω>0 0<α<β fm(α,β)=ωβ−α∫β/ωα/ωsin(ωt)dt fr(α,β)=ωβ−α∫β/ωα/ωsin2(ωt)dt fm(π6,5π6)=?fm(π6,π2) fr(π6,5π6)=?fr(π6,π2)
Answered by Yozzian last updated on 31/Aug/15
Undertheintegralwithinthegiven expressionsoffm(α,β)andfr(α,β) ωisconstant.Sowecanintegrate asusualwithω>0. ∫α/ωβ/ωsinωtdt=−1ωcos(ωt)∣α/ωβ/ω rhs=−1ω(cosβ−cosα) ∴fm(α,β)=cosα−cosββ−α Whenα=π/6andβ=5π/6 fm(π6,5π6)=cos(π6)−cos(5π6)π(56−16) =32−(−32)2π3 fm(π6,5π6)=332π..................(1) Whenα=π6andβ=π2weobtain fm(π6,π2)=cos(π6)−cos(π2)π(12−16) =3/2−0π/3 fm(π6,π2)=332π....................(2) Uponcomparisonofresults(1) and(2),weseethattheyareequal invalue. Hence,fm(π6,5π6)=fm(π6,π2). Thenextintegralalsohasω constantwithrespecttothe variableunderintegrationt. ∴∫α/ωβ/ωsin2ωtdt=12∫α/wβ/ω(1−cos(2ωt))dt rhs=12(t−12ωsin(2ωt))∣α/ωβ/ω rhs=12(β−αω+12ω(sin(2α)−sin(2β))) rhs=2(β−α)+sin2α−sin2β4ω ∴fr(α,β)=2(β−α)+sin2α−sin2β4(β−α) Whenα=π6andβ=5π6weget fr(π6,5π6)=12+sinπ3−sin5π32π3 =12+32−(−32)2π/3 =12+332π fr(π6,5π6)=π+332π........(3) Whenα=π6andβ=π2wehave fr(π6,π2)=12+sinπ3−sinππ/3 =π+332π.........(4) Oncomparingtheresults(3)and (4)weseethattheyareequalin value.Hence, fr(π6,5π6)=fr(π6,π2).
Terms of Service
Privacy Policy
Contact: info@tinkutara.com