Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 1673 by 123456 last updated on 31/Aug/15

ω∈R,ω>0  0<α<β  f_m (α,β)=(ω/(β−α))∫_(α/ω) ^(β/ω) sin (ωt)dt  f_r (α,β)=(√((ω/(β−α))∫_(α/ω) ^(β/ω) sin^2 (ωt)dt))  f_m ((π/6),((5π)/6))=^? f_m ((π/6),(π/2))  f_r ((π/6),((5π)/6))=^? f_r ((π/6),(π/2))

ωR,ω>0 0<α<β fm(α,β)=ωβαβ/ωα/ωsin(ωt)dt fr(α,β)=ωβαβ/ωα/ωsin2(ωt)dt fm(π6,5π6)=?fm(π6,π2) fr(π6,5π6)=?fr(π6,π2)

Answered by Yozzian last updated on 31/Aug/15

Under the integral within the given  expressions of f_m (α,β) and f_r (α,β)  ω is constant. So we can integrate  as usual with ω>0.  ∫_(α/ω) ^(β/ω) sinωt dt=−(1/ω)cos(ωt)∣_(α/ω) ^(β/ω)   rhs=((−1)/ω)(cosβ−cosα)  ∴ f_m (α,β)=((cosα−cosβ)/(β−α))  When α=π/6 and β=5π/6  f_m ((π/6),((5π)/6))=((cos((π/6))−cos(((5π)/6)))/(π((5/6)−(1/6))))                      =((((√3)/2)−(−((√3)/2)))/((2π)/3))  f_m ((π/6),((5π)/6))=((3(√3))/(2π)).................. (1)  When α=(π/6) and β=(π/2) we obtain  f_m ((π/6),(π/2))=((cos((π/6))−cos((π/2)))/(π((1/2)−(1/6))))                       =(((√3)/2−0)/(π/3))  f_m ((π/6),(π/2))=((3(√3))/(2π))  ....................(2)  Upon comparison of results (1)   and (2), we see that they are equal  in value.   Hence,f_m ((π/6),((5π)/6))=f_m ((π/6),(π/2)) .    The next integral also has ω   constant with respect to the   variable under integration t.  ∴∫_(α/ω) ^(β/ω) sin^2 ωt dt=(1/2)∫_(α/w) ^(β/ω) (1−cos(2ωt))dt  rhs=(1/2)(t−(1/(2ω))sin(2ωt))∣_(α/ω) ^(β/ω)   rhs=(1/2)(((β−α)/ω)+(1/(2ω))(sin(2α)−sin(2β)))  rhs=((2(β−α)+sin2α−sin2β)/(4ω))  ∴f_r (α,β)=(√((2(β−α)+sin2α−sin2β)/(4(β−α))))  When α=(π/6) and β=((5π)/6) we get  f_r ((π/6),((5π)/6))=(√((1/2)+((sin(π/3)−sin((5π)/3))/((2π)/3))))              =(√((1/2)+((((√3)/2)−(−((√3)/2)))/(2π/3))))              =(√((1/2)+((3(√3))/(2π))))  f_r ((π/6),((5π)/6))=(√((π+3(√3))/(2π))). .......(3)  When α=(π/6) and β=(π/2) we have  f_r ((π/6),(π/2))=(√((1/2)+((sin(π/3)−sinπ)/(π/3))))                     =(√((π+3(√3))/(2π))).  ........(4)  On comparing the results (3) and  (4) we see that they are equal in  value. Hence,            f_r ((π/6),((5π)/6))=f_r ((π/6),(π/2)) .

Undertheintegralwithinthegiven expressionsoffm(α,β)andfr(α,β) ωisconstant.Sowecanintegrate asusualwithω>0. α/ωβ/ωsinωtdt=1ωcos(ωt)α/ωβ/ω rhs=1ω(cosβcosα) fm(α,β)=cosαcosββα Whenα=π/6andβ=5π/6 fm(π6,5π6)=cos(π6)cos(5π6)π(5616) =32(32)2π3 fm(π6,5π6)=332π..................(1) Whenα=π6andβ=π2weobtain fm(π6,π2)=cos(π6)cos(π2)π(1216) =3/20π/3 fm(π6,π2)=332π....................(2) Uponcomparisonofresults(1) and(2),weseethattheyareequal invalue. Hence,fm(π6,5π6)=fm(π6,π2). Thenextintegralalsohasω constantwithrespecttothe variableunderintegrationt. α/ωβ/ωsin2ωtdt=12α/wβ/ω(1cos(2ωt))dt rhs=12(t12ωsin(2ωt))α/ωβ/ω rhs=12(βαω+12ω(sin(2α)sin(2β))) rhs=2(βα)+sin2αsin2β4ω fr(α,β)=2(βα)+sin2αsin2β4(βα) Whenα=π6andβ=5π6weget fr(π6,5π6)=12+sinπ3sin5π32π3 =12+32(32)2π/3 =12+332π fr(π6,5π6)=π+332π........(3) Whenα=π6andβ=π2wehave fr(π6,π2)=12+sinπ3sinππ/3 =π+332π.........(4) Oncomparingtheresults(3)and (4)weseethattheyareequalin value.Hence, fr(π6,5π6)=fr(π6,π2).

Terms of Service

Privacy Policy

Contact: info@tinkutara.com