Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 167301 by mnjuly1970 last updated on 12/Mar/22

Answered by amin96 last updated on 12/Mar/22

I=∫_0 ^(π/8) (1/( (√2)(1−cos((π/4)−x))))dx    (π/4)−x=t    t[(π/8); (π/4)]    I=(1/( (√2)))∫_(π/8) ^(π/4) (dt/((1−cos(t))))=(1/(2(√2)))∫_(π/8) ^(π/4) csc^2 ((t/2))dt=  =−(1/( (√2)))[cot((t/2))]_(π/8) ^(π/4) =−(1/( (√2)))[((sin((π/(16))−(π/8)))/(sin((π/8))sin((π/(16)))))]=  =(1/( (√2)))[(1/(sin((π/8))))]=((√2)/(2(√((1−cos((π/4))/2))))=(1/( (√(1−((√2)/2)))))=  =((√2)/( (√(2−(√2)))))=(((√2)×(√(2+(√2))))/( (√2)))=(√(2+(√2)))    by M.A

I=0π812(1cos(π4x))dxπ4x=tt[π8;π4]I=12π8π4dt(1cos(t))=122π8π4csc2(t2)dt==12[cot(t2)]π8π4=12[sin(π16π8)sin(π8)sin(π16)]==12[1sin(π8)]=221cos(π42=1122==222=2×2+22=2+2byM.A

Commented by mnjuly1970 last updated on 12/Mar/22

thanks alot sir

thanksalotsir

Answered by MJS_new last updated on 12/Mar/22

α=β=2

α=β=2

Answered by Mathspace last updated on 13/Mar/22

changement tan((x/2))=t give  I=∫_0 ^(tan((π/(16))))  ((2dt)/((1+t^2 )((√2)−((2t)/(1+t^2 ))−((1−t^2 )/(1+t^2 )))))  =2∫_0 ^(tan((π/(16))))   (dt/( (√2)(1+t^2 )−2t−1+t^2 ))  =2∫_0 ^(tan((π/(16))))  (dt/( (√2)+(1+(√2))t^2 −2t−1))  =2∫_0 ^(tan((π/(16))))  (dt/((1+(√2))t^2 −2t+(√2)−1))  roots!  Δ^′ =1−((√2)+1)((√2)−1)  =1−(2−1)=1−1=0  one root  x_0 =(1/(1+(√2)))=(√2)−1 ⇒  (1+(√2))t^2 −2t+(√2)−1=(1+(√2))(t−(√2)+1)^2   ⇒I=2∫_0 ^(tan((π/(16))))  (dt/((1+(√2))(t−(√2)+1)^2 ))  =2((√2)−1)∫_0 ^(tan((π/(16))))  (dt/((t−(√2)+1)^2 ))  =−2((√2)−1)[(1/(t−(√2)+1))]_0 ^(tan((π/(16))))   =2(1−(√2)){(1/(tan((π/(16)))−(√2)+1))−(1/(1+(√2)))}  rest to calculate tan((π/(16))) by the formulae  tan(2x)=((2tanx)/(1−tan^2 x)) ⇒  tan((π/8))=(√2)−1=((2x)/(1−x^2 ))  x=tan((π/(16)))....

changementtan(x2)=tgiveI=0tan(π16)2dt(1+t2)(22t1+t21t21+t2)=20tan(π16)dt2(1+t2)2t1+t2=20tan(π16)dt2+(1+2)t22t1=20tan(π16)dt(1+2)t22t+21roots!Δ=1(2+1)(21)=1(21)=11=0onerootx0=11+2=21(1+2)t22t+21=(1+2)(t2+1)2I=20tan(π16)dt(1+2)(t2+1)2=2(21)0tan(π16)dt(t2+1)2=2(21)[1t2+1]0tan(π16)=2(12){1tan(π16)2+111+2}resttocalculatetan(π16)bytheformulaetan(2x)=2tanx1tan2xtan(π8)=21=2x1x2x=tan(π16)....

Terms of Service

Privacy Policy

Contact: info@tinkutara.com