Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 167305 by greogoury55 last updated on 12/Mar/22

   Q=∫ ((2sin (x))/( (√3) sin (x)−cos (x))) dx=?

Q=2sin(x)3sin(x)cos(x)dx=?

Answered by amin96 last updated on 13/Mar/22

Q=∫((sin(x))/(((√3)/2)sin(x)−(1/2)cos(x)))dx=  =−∫((sin(x))/(sin((π/6)−x)))dx        (π/6)−x =t  x=(π/6)−t     Q=∫((sin((π/6)−t))/(sin(t)))dt=  =−∫((sin(t−(π/6)))/(sin(t)))=−(1/2)∫(((√3)sin(t)−cos(t))/(sin(t)))dt=  =−(1/2)(∫(√3)tdt−∫ctg(t)dt)=  =−(1/2)[t(√3)−ln(sin(sin(t))]_(t=(π/6)−x) +c=  =−(1/2)(((π(√3))/6)−x(√3)−ln(sin((π/6)−x))+c=  =−((π(√3))/(12))+((x(√3))/2)+((ln(sin((π/6)−x)))/2)+c=  =(1/2)(x(√3)+ln(sin((π/6)−x))+c

Q=sin(x)32sin(x)12cos(x)dx==sin(x)sin(π6x)dxπ6x=tx=π6tQ=sin(π6t)sin(t)dt==sin(tπ6)sin(t)=123sin(t)cos(t)sin(t)dt==12(3tdtctg(t)dt)==12[t3ln(sin(sin(t))]t=π6x+c==12(π36x3ln(sin(π6x))+c==π312+x32+ln(sin(π6x))2+c==12(x3+ln(sin(π6x))+c

Terms of Service

Privacy Policy

Contact: info@tinkutara.com