All Questions Topic List
Others Questions
Previous in All Question Next in All Question
Previous in Others Next in Others
Question Number 167330 by LEKOUMA last updated on 13/Mar/22
Calculate∫1x+x2+x+1dx
Answered by greogoury55 last updated on 13/Mar/22
=∫x2+x+1−xx+1dx=∫(x+12)2+34−xx+1dxK1=∫(x+12)2+34x+1dx[x+12=32tant]K1=∫32sect12(1+3tant)32.sec2tdtK1=32∫sec2tcost+3sintdtK1=32∫sec2t2(12cost+32sint)dtK1=34∫sec2tcos(t−π3)dtK2=∫xx+1dx=∫(x+1)−1x+1dxK2=x−ln∣x+1∣+c
Commented by peter frank last updated on 14/Mar/22
thankyou
Answered by MJS_new last updated on 13/Mar/22
∫dxx+x2+x+1=−∫x−x2+x+1x+1dx=[t=x+12→dx=dt]=−∫2t−1−4t2+32t+1dt=[u=33(2t+4t2+3)→dt=3(u2+1)4u2]=32∫u2+1u2(3u−1)du==∫(233u−1−32u−32u2)du==2ln(3u−1)−32lnu+32u=...=2ln(x+x2+x+1)−32ln(2x+1+x2+x+1)−x+x2+x+1+C
Terms of Service
Privacy Policy
Contact: info@tinkutara.com