Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 167330 by LEKOUMA last updated on 13/Mar/22

Calculate  ∫(1/(x+(√(x^2 +x+1))))dx

Calculate1x+x2+x+1dx

Answered by greogoury55 last updated on 13/Mar/22

=∫ (((√(x^2 +x+1))−x)/(x+1)) dx   =∫ (((√((x+(1/2))^2 +(3/4)))−x)/(x+1)) dx  K_1 = ∫ ((√((x+(1/2))^2 +(3/4)))/(x+1)) dx   [ x+(1/2)=((√3)/2) tan t ]  K_1 =∫ ((((√3)/2) sec t )/((1/2)(1+(√3) tan t))) ((√3)/2).sec^2 t dt  K_1 = (3/2)∫ ((sec^2 t)/(cos t+(√3) sin t)) dt  K_1 =(3/2) ∫ ((sec^2 t)/(2((1/2)cos t+((√3)/2) sin t))) dt  K_1 =(3/4)∫ ((sec^2 t)/(cos (t−(π/3)))) dt  K_2 =∫ (x/(x+1))dx=∫ (((x+1)−1)/(x+1)) dx  K_2 =x−ln ∣x+1∣ +c

=x2+x+1xx+1dx=(x+12)2+34xx+1dxK1=(x+12)2+34x+1dx[x+12=32tant]K1=32sect12(1+3tant)32.sec2tdtK1=32sec2tcost+3sintdtK1=32sec2t2(12cost+32sint)dtK1=34sec2tcos(tπ3)dtK2=xx+1dx=(x+1)1x+1dxK2=xlnx+1+c

Commented by peter frank last updated on 14/Mar/22

thank you

thankyou

Answered by MJS_new last updated on 13/Mar/22

∫(dx/(x+(√(x^2 +x+1))))=−∫((x−(√(x^2 +x+1)))/(x+1))dx=       [t=x+(1/2) → dx=dt]  =−∫((2t−1−(√(4t^2 +3)))/(2t+1))dt=       [u=((√3)/3)(2t+(√(4t^2 +3))) → dt=(((√3)(u^2 +1))/(4u^2 ))]  =((√3)/2)∫((u^2 +1)/(u^2 ((√3)u−1)))du=  =∫(((2(√3))/( (√3)u−1))−(3/(2u))−((√3)/(2u^2 )))du=  =2ln ((√3)u−1) −(3/2)ln u +((√3)/(2u))=  ...  =2ln (x+(√(x^2 +x+1))) −(3/2)ln (2x+1+(√(x^2 +x+1))) −x+(√(x^2 +x+1))+C

dxx+x2+x+1=xx2+x+1x+1dx=[t=x+12dx=dt]=2t14t2+32t+1dt=[u=33(2t+4t2+3)dt=3(u2+1)4u2]=32u2+1u2(3u1)du==(233u132u32u2)du==2ln(3u1)32lnu+32u=...=2ln(x+x2+x+1)32ln(2x+1+x2+x+1)x+x2+x+1+C

Terms of Service

Privacy Policy

Contact: info@tinkutara.com